Learn More
Drought and salinity are major abiotic stresses to crop production. Here, we show that overexpression of stress responsive gene SNAC1 (STRESS-RESPONSIVE NAC 1) significantly enhances drought resistance in transgenic rice (22-34% higher seed setting than control) in the field under severe drought stress conditions at the reproductive stage while showing no(More)
Yield potential, plant height and heading date are three classes of traits that determine the productivity of many crop plants. Here we show that the quantitative trait locus (QTL) Ghd7, isolated from an elite rice hybrid and encoding a CCT domain protein, has major effects on an array of traits in rice, including number of grains per panicle, plant height(More)
The GS3 locus located in the pericentromeric region of rice chromosome 3 has been frequently identified as a major QTL for both grain weight (a yield trait) and grain length (a quality trait) in the literature. Near isogenic lines of GS3 were developed by successive crossing and backcrossing Minghui 63 (large grain) with Chuan 7 (small grain), using Minghui(More)
Increasing crop yield is one of the most important goals of plant science research. Grain size is a major determinant of grain yield in cereals and is a target trait for both domestication and artificial breeding(1). We showed that the quantitative trait locus (QTL) GS5 in rice controls grain size by regulating grain width, filling and weight. GS5 encodes a(More)
The TIFY family is a novel plant-specific gene family involved in the regulation of diverse plant-specific biologic processes, such as development and responses to phytohormones, in Arabidopsis. However, there is limited information about this family in monocot species. This report identifies 20 TIFY genes in rice, the model monocot species. Sequence(More)
Grain yield in many cereal crops is largely determined by grain size. Here we report the genetic and molecular characterization of GS3, a major quantitative trait locus for grain size. It functions as a negative regulator of grain size and organ size. The wild-type isoform is composed of four putative domains: a plant-specific organ size regulation (OSR)(More)
Although 109 WRKY genes have been identified in the rice genome, the functions of most are unknown. Here, we show that OsWRKY13 plays a pivotal role in rice disease resistance. Overexpression of OsWRKY13 can enhance rice resistance to bacterial blight and fungal blast, two of the most devastating diseases of rice worldwide, at both the seedling and adult(More)
New evidence suggests a role for the plant growth hormone auxin in pathogenesis and disease resistance. Bacterial infection induces the accumulation of indole-3-acetic acid (IAA), the major type of auxin, in rice (Oryza sativa). IAA induces the expression of expansins, proteins that loosen the cell wall. Loosening the cell wall is key for plant growth but(More)
Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious rice diseases worldwide. A rice gene, Xa26, conferring resistance against Xoo at both seedling and adult stages was isolated by map-based cloning strategies from the rice cultivar Minghui 63. Xa26 belongs to a multigene family consisting of four members. It(More)
Disease resistance and sexual reproductive development are generally considered as separate biological processes, regulated by different sets of genes. Here we show that xa13, a recessive allele conferring disease resistance against bacterial blight, one of the most devastating rice diseases worldwide, plays a key role in both disease resistance and pollen(More)