Xiangfeng Zeng

Learn More
Abnormal inflammations are central therapeutic targets in numerous infectious and autoimmune diseases. Dendritic cells (DCs) are involved in these inflammations, serving as both antigen presenters and proinflammatory cytokine providers. As an immuno-suppressor applied to the therapies of multiple sclerosis and allograft transplantation, fingolimod (FTY720)(More)
Icaritin, an intestinal metabolite of prenylflavonoids from Herba Epimedii, has been known to regulate many cellular processes. The purpose of this study was to investigate the protective effects of icaritin on inflammation in lipopolysaccharide (LPS) stimulated mouse peritoneal macrophages in vitro and zymosan induced peritonitis model in vivo. The release(More)
The possible health risks from heavy metal (Zn, Cu, Cr, Ni, Pb, and Cd) contamination to the local population through the food chain were evaluated in Tianjin, China, a city with a long history of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, and 54.5 and 18.25% soil(More)
The low survival rate of patients with colorectal cancer (CRC) is mainly due to the drug resistance of tumor cells to chemotherapeutic agents. It has been reported that basic fibroblast growth factor (bFGF) is an essential factor involved in the epigenetic mechanisms of drug resistance, which provides a novel potential target for improving the sensitivity(More)
FTY720 is a potent drug for multiple sclerosis treatment. To biologically address its possible applications to more generalized diseases with aberrant inflammation, we are testing whether FTY720 can function as a lymphocyte cell cycle blocker and activation suppressor via a concanavalin A (ConA)-mediated mouse lymphocyte pan-activation model. Mouse(More)
Bioleaching by Aspergillus niger strain SY1 combined with Fenton-like reaction was optimized to improve trace metal removal and dewaterability of dredged sediments. The major optimized parameters were the duration of bioleaching and H₂O₂ dose in Fenton-like process (5 days and 2g H₂O₂/L, respectively). Bioleaching resulted in the removal of ≈90% of Cd, ≈60%(More)
Ocean acidification and pollution coexist to exert combined effects on the functions and services of marine ecosystems. Ocean acidification can increase the biotoxicity of heavy metals by altering their speciation and bioavailability. Marine pollutants, such as heavy metals and oils, could decrease the photosynthesis rate and increase the respiration rate(More)
A rise in intracellular Ca(2+) ([Ca(2+)](i)) is crucial for the activation of macrophages, however, the mechanisms and consequences of this [Ca(2+)](i) increase remain unclear. This study investigated the role of calcium in mouse peritoneal macrophages stimulated with LPS plus IFN-γ by using the store-operated Ca(2+) channel (SOCC) blocker SK&F 96365. Our(More)
The interplay between autophagy and apoptosis response to chemotherapy is still a subject of intense debate in recent years. More efforts have focused on the regulation effects of apoptosis on autophagy, whereas how autophagy affects apoptosis remains poorly understood. In this study performed on prostate cancer cells, we investigated the role of autophagy(More)
SK&F 96365, 51-(beta-[3-(p-methoxyphenyl)-propyloxy]-p-methoxyphenethyl)-1H-imidazole hydrochloride, has emerged as a useful pharmacological tool in the study of store-operated Ca²⁺ entry (SOCE). But the precise molecular mechanism and effect of SK&F 96365 on mouse lymphocytes are still not well determined. This study investigated the pharmacological(More)