Learn More
Growing evidence suggests that type 2 diabetes mellitus (DM) is associated with age-dependent Alzheimer’s disease (AD), the latter of which has even been considered as type 3 diabetes. Several physiopathological features including hyperglycemia, oxidative stress, and dysfunctional insulin signaling relate DM to AD. In this study, high glucose-, oxidative(More)
Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they(More)
Polarized growth in Saccharomyces cerevisiae is thought to occur by the transport of post-Golgi vesicles along actin cables to the daughter cell, and the subsequent fusion of the vesicles with the plasma membrane. Previously, we have shown that Msb3p and Msb4p genetically interact with Cdc42p and display a GTPase-activating protein (GAP) activity toward a(More)
In Saccharomyces cerevisiae, polarized growth depends on interactions between the actin cytoskeleton and the secretory machinery. Here we show that the Rab GTPase-activating proteins (GAPs) Msb3 and Msb4 interact directly with Spa2, a scaffold protein of the "polarisome" that also interacts with the formin Bni1. Spa2 is required for the polarized(More)
In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4(Q131L) mutant in an rdi1Δ strain caused(More)
Polarization of cell growth along a defined axis is essential for the generation of cell and tissue polarity. In the budding yeast Saccharomyces cerevisiae, Axl2p plays an essential role in polarity-axis determination, or more specifically, axial budding in MATa or alpha cells. Axl2p is a type I membrane glycoprotein containing four cadherin-like motifs in(More)
In budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a. 538-1007) segment. Overexpression of Rga1-C538 but not full-length Rga1 severely impaired growth and cell(More)
Tao-Hong-Si-Wu decoction (TSD) is a famous traditional Chinese medicine (TCM) and widely used for ischemic disease in China. TSD medicated serum was prepared after oral administration of TSD (1.6 g/kg) twice a day for 3 days in rats. TSD medicated serum induced human umbilical vein endothelial cells (HUVECs) proliferation, VEGF secretion, and nitric oxide(More)
AIM YCP, a novel (1,4)-alpha-D-glucan, was isolated from the mycelium of the marine filamentous fungus Phoma herbarum YS4108. In this work, we investigated a YCP-binding cellular receptor expressed by macrophages and the intracellular signal transduction pathways involved in YCP-induced macrophage activation. METHODS Fluorescence-labeled YCP (fl-YCP) was(More)
Correct positioning of polarity axis in response to internal or external cues is central to cellular morphogenesis and cell fate determination. In the budding yeast Saccharomyces cerevisiae, Bud3p plays a key role in the axial bud-site selection (axial budding) process in which cells assemble the new bud next to the preceding cell division site. Bud3p is(More)