#### Filter Results:

#### Publication Year

1997

2010

#### Co-author

#### Publication Venue

Learn More

- Yong-Yao Li, Xiang-Qian Luo, Helmut Kröger
- 2008

We investigate the bound states of the Yukawa potential V (r) = −λ exp(−αr)/r, using different algorithms: solving the Schrödinger equation numerically and our Monte Carlo Hamiltonian approach. There is a critical α = α C , above which no bound state exists. We study the relation between α C and λ for various angular momentum quantum number l, and find in… (More)

- Xiang-Qian Luo
- 2008

I extend to QCD an efficient method for lattice gauge theory with dynamical fermions. Once the eigenvalues of the Dirac operator and the density of states of pure gluonic configurations at a set of plaquette energies (proportional to the gauge action) are computed, thermodynamical quantities deriving from the partition function can be obtained for arbitrary… (More)

Hybrid (exotic) mesons, which are important predictions of quantum chromodynamics (QCD), are states of quarks and anti-quarks bound by excited gluons. First principle lattice study of such states would help us understand the role of " dynamical " color in low energy QCD and provide valuable information for experimental search for these new particles. In… (More)

- Chun-Qing Huang, Jun-Qin Jiang, Xiang-Qian Luo, Hamza Jirari, Helmut Kröger
- 2002

In order to extend the recently proposed Monte Carlo Hamiltonian to many-body systems, we suggest to concept of a stochastic basis. We apply it to the chain of N s = 9 coupled anharmonic oscillators. We compute the spectrum of excited states in a finite energy window and thermodynamical observables free energy, average energy, entropy and specific heat in a… (More)

- Xiang-Qian Luo
- 2002

We describe the construction of a high performance parallel computer composed of PC components, as well as the performance test in lattice QCD.

- XIANG-QIAN LUO
- 2001

Monte Carlo techniques with importance sampling have been extensively applied to lattice gauge theory in the Lagrangian formulation. Unfortunately, it is extremely difficult to compute the excited states using the conventional Monte Carlo algorithm. Our recently developed approach: the Monte Carlo Hamiltonian method, has been designed to overcome the… (More)

- Shuo-Hong Guo, Xiang-Qian Luo
- 1997

We review the recent advances in the Hamiltonian formulation of lattice gauge theory for approaching the continuum physics. In particular, vacuum wave function and glueball spectrum calculations by coupled cluster method with truncation scheme preserving the continuum behavior are described.

The stratospheric nacelle system flying in the stratosphere has a very wide application future especially in the fields of modern scientific observation experiments and wireless communication. An attitude control system is designed to adjust and control nacelle attitude, while the reacting inertial wheel system based on PID controller is designed to adjust… (More)

- Jun-Qin Jiang, Xiang-Qian Luo, Zhong-Hao Mei, Hamza Jirari, Helmut Kröger, Chi-Min Wu
- 2008

QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from… (More)

- Eric B. Gregory, Shuo-Hong Guo, Helmut Kröger, Xiang-Qian Luo
- 2008

At sufficiently high temperature and density, quantum chromodynamics (QCD) is expected to undergo a phase transition from the confined phase to the quark-gluon plasma phase. In the Lagrangian lattice formulation the Monte Carlo method works well for QCD at finite temperature, however, it breaks down at finite chemical potential. We develop a Hamiltonian… (More)