Learn More
To understand the role of Na(+)/H(+) exchanger 1 (NHE1) in intracellular pH (pH(i)) regulation and neuronal function, we took advantage of natural knockout mice lacking NHE1, the most ubiquitously and densely expressed NHE isoform in the central nervous system (CNS). CA1 neurons from both wild-type (WT) and NHE1 mutant mice were studied by continuous(More)
To study the physiological effects of chronic intermittent hypoxia on neuronal excitability and function in mice, we exposed animals to cyclic hypoxia for 8 h daily (12 cycles/h) for approximately 4 wk, starting at 2-3 days of age, and examined the properties of freshly dissociated hippocampal neurons in vitro. Compared with control (Con) hippocampal CA1(More)
Lipid metabolism influences membrane proteins, including ion channels, in health and disease. Fatty acid esters of CoA are important intermediates in fatty acid metabolism and lipid biosynthesis. In the present study, we examined the effect of acyl-CoAs on hSlo BK currents. Arachidonoyl-CoA (C(20)-CoA) induced beta2-dependent inhibition of hSlo-alpha(More)
Hypoxia can cause severe damage to cells by initiating signaling cascades that lead to cell death. A cellular oxygen sensor, other than the respiratory chain, might exist in sensitive components of these signaling cascades. Recently, we found evidence that mitochondrial ion channels are sensitive to low levels of oxygen. We therefore studied the effects of(More)
Ca2+-activated K+ currents and their Ca2+ sources through high-threshold voltage-activated Ca2+ channels were studied using whole-cell patch-clamp recordings from freshly dissociated mouse neocortical pyramidal neurons. In the presence of 4-aminopyridine, depolarizing pulses evoked transient outward currents and several components of sustained currents in a(More)
Slack (Slo 2.2), a member of the Slo potassium channel family, is activated by both voltage and cytosolic factors, such as Na(+) ([Na(+)](i)) and Cl(-) ([Cl(-)](i)). Since the Slo family is known to play a role in hypoxia, and since hypoxia/ischemia is associated with an increase in H(+) and CO(2) intracellularly, we hypothesized that the Slack channel may(More)
Tumor cells are resistant to hypoxia but the underlying mechanism(s) of this tolerance remain poorly understood. In healthy brain cells, plasmalemmal Ca(2+)-activated K(+) channels ((plasma)BK) function as oxygen sensors and close under hypoxic conditions. Similarly, BK channels in the mitochondrial inner membrane ((mito)BK) are also hypoxia sensitive and(More)
In order to study the factors that govern the expression of sodium channel alpha-, beta1- and beta2-subunits, the influence that Schwann cells (SC) exert in the expression of sodium channels in DRG neurons was examined with in situ hybridization, immunocytochemistry, and patch clamp recording. The expression of sodium channel alpha-, beta1-, and(More)
The progression of epithelial cancer is associated with an intense immunological interaction between the tumor cells and immune cells of the host. However, little is known about the interaction between tumor cells and polymorphonuclear granulocytes (PMNs) in patients with head and neck squamous cell carcinoma (HNSCC). In our study, we investigated systemic(More)
O2 deprivation can produce many devastating clinical conditions such as myocardial infarct and stroke. The molecular mechanisms underlying the inherent tissue susceptibility or tolerance to O2 lack are, however, not well defined. Since the fruit fly, Drosophila melanogaster, is extraordinarily tolerant to O2 deprivation, we have performed a genetic screen(More)