Xiang Qun Gu

Learn More
Ca2+-activated K+ currents and their Ca2+ sources through high-threshold voltage-activated Ca2+ channels were studied using whole-cell patch-clamp recordings from freshly dissociated mouse neocortical pyramidal neurons. In the presence of 4-aminopyridine, depolarizing pulses evoked transient outward currents and several components of sustained currents in a(More)
The progression of epithelial cancer is associated with an intense immunological interaction between the tumor cells and immune cells of the host. However, little is known about the interaction between tumor cells and polymorphonuclear granulocytes (PMNs) in patients with head and neck squamous cell carcinoma (HNSCC). In our study, we investigated systemic(More)
ACPRs of leukopenia in peripheral blood of workers exposed to benzene in small-scale industries are calculated using capture-recapture methods. The results from two figures with 6-month apart demonstrate that the ACPR in workers exposed to benzene is 36.81(29.14-44)%, significantly higher than that of control 12.71(7.20-18.22)% (P < 0.05), with a relative(More)
The effect of HCO(3)(-)/CO(2) on membrane properties of isolated hippocampal CA1 neurons was studied with the use of the whole cell configuration of the patch-clamp technique. Neurons were acutely dissociated from 21- to 30-day-old mice. In the current-clamp mode, HCO(3)(-)/CO(2) significantly hyperpolarized CA1 neurons by more than 10 mV and decreased(More)
The currently accepted scheme for reactive oxygen species production during ischemia/reperfusion injury is characterized by a deleterious mitochondria-derived burst of radical generation during reperfusion; however, recent examination of the penumbra suggests a central role for NADPH-oxidase (Nox)-mediated radical generation during the ischemic period.(More)
To understand the role of Na(+)/H(+) exchanger 1 (NHE1) in intracellular pH (pH(i)) regulation and neuronal function, we took advantage of natural knockout mice lacking NHE1, the most ubiquitously and densely expressed NHE isoform in the central nervous system (CNS). CA1 neurons from both wild-type (WT) and NHE1 mutant mice were studied by continuous(More)
To study the physiological effects of chronic intermittent hypoxia on neuronal excitability and function in mice, we exposed animals to cyclic hypoxia for 8 h daily (12 cycles/h) for approximately 4 wk, starting at 2-3 days of age, and examined the properties of freshly dissociated hippocampal neurons in vitro. Compared with control (Con) hippocampal CA1(More)
O2 deprivation can produce many devastating clinical conditions such as myocardial infarct and stroke. The molecular mechanisms underlying the inherent tissue susceptibility or tolerance to O2 lack are, however, not well defined. Since the fruit fly, Drosophila melanogaster, is extraordinarily tolerant to O2 deprivation, we have performed a genetic screen(More)
AHNAK/Desmoyokin is a giant protein which has been recently linked to reorganization of the actin cytoskeleton, cellular migration and invasion. Here, we investigated the role of AHNAK in the pathophysiology of larynx carcinoma-one of the major subtypes of head and neck cancer. To this end, we analysed AHNAK expression in tumor tissues from 83 larynx(More)
Mice lacking Na(+)/H(+) exchanger 1 (NHE1) suffer from recurrent seizures and die early postnatally. Although the mechanisms for seizures are not well established, our previous electrophysiological work has shown that neuronal excitability and Na(+) current density are increased in hippocampal CA1 neurons of these mutant mice. However, it is unknown whether(More)