Xianchao Long

Learn More
— We describe Team WPI-CMU's approach to the DARPA Robotics Challenge (DRC), focusing on our strategy to avoid failures that required physical human intervention. We implemented safety features in our controller to detect potential catastrophic failures, stop the current behavior, and allow remote intervention by a human supervisor. Our safety methods and(More)
The DARPA Robotics Challenge (DRC) requires teams to integrate mobility, manipulation, and perception to accomplish several disaster-response tasks. We describe our hardware choices and software architecture, which enable human-in-the-loop control of a 28 degree-of-freedom ATLAS humanoid robot over a limited bandwidth link. We discuss our methods, results,(More)
— Door traversal is generally a trivial task for human beings but particularly challenging for humanoid robots. This paper describes a holistic approach for a full-sized humanoid robot to traverse through a door in an outdoor unstructured environment as specified by the requirements of the DARPA Robotics Challenge. Door traversal can be broken down into(More)
Motions of a robot interacting with its environment can be described by a set of constraints. This paper introduces an approach, called motion template, which can quickly program and compose the constraints for the motion planner to generate the trajectory. Two types of motion templates, grasp and turn, are specifically described to explain the details of(More)
  • 1