• Citations Per Year
Learn More
Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective(More)
Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We first study the impact of community structure on people’s susceptibility. Despite that the community structure(More)
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading(More)
The increasing availability of spatiotemporal data continuously collected from various sources provides new opportunities for a timely understanding of the data in their spatial and temporal context. Finding abnormal patterns in such data poses significant challenges. Given that there is often no clear boundary between normal and abnormal patterns, existing(More)
  • 1