Learn More
Histone methylation plays a fundamental role in regulating diverse developmental processes and is also involved in silencing repetitive sequences in order to maintain genome stability. The methylation marks are written on lysine or arginine by distinct enzymes, namely, histone lysine methyltransferases (HKMTs) or protein arginine methyltransferases (PRMTs).(More)
Polyamines are implicated in regulating various developmental processes in plants, but their exact roles and how they govern these processes still remain elusive. We report here an Arabidopsis bushy and dwarf mutant, bud2, which results from the complete deletion of one member of the small gene family that encodes S-adenosylmethionine decarboxylases(More)
Histone methylation homeostasis is achieved by controlling the balance between methylation and demethylation to maintain chromatin function and developmental regulation. In animals, a conserved Jumonji C (JmjC) domain was found in a large group of histone demethylases. However, it is still unclear whether plants also contain the JmjC domain-containing(More)
Polycomb group (PcG)-mediated histone H3 lysine 27 trimethylation (H3K27me3) has a key role in gene repression and developmental regulation. There is evidence that H3K27me3 is actively removed in plants, but it is not known how this occurs. Here we show that RELATIVE OF EARLY FLOWERING 6 (REF6), also known as Jumonji domain-containing protein 12 (JMJ12),(More)
Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes(More)
In diverse eukaryotes, constitutively silent sequences, such as transposons and repeats, are marked by methylation at histone H3 lysine 9 (H3K9me). Although selective H3K9me is critical for maintaining genome integrity, mechanisms to exclude H3K9me from active genes remain largely unexplored. Here, we show in Arabidopsis that the exclusion depends on a(More)
MicroRNAs and small interfering RNAs (siRNAs) are two classes of small regulatory RNAs derived from different types of precursors and processed by distinct Dicer or Dicer-like (DCL) proteins. During evolution, four Arabidopsis thaliana DCLs and six rice (Oryza sativa) DCLs (Os DCLs) appear to have acquired specialized functions. The Arabidopsis DCLs are(More)
Higher plants have evolved multiple RNA-dependent RNA polymerases (RDRs), which work with Dicer-like (DCL) proteins to produce different classes of small RNAs with specialized molecular functions. Here we report that OsRDR6, the rice (Oryza sativa L.) homolog of Arabidopsis RDR6, acts in the biogenesis of various types and sizes of small RNAs. We isolated a(More)
Technologies to achieve the specific and precise knockout of genes are critical for understanding gene functions and fundamental biological processes. Targeted genome editing as a new and efficient method to mutate genes has been rapidly used in many organisms. Compared with the earlier systems, such as zinc finger nucleases (ZFNs) and transcription(More)
This paper 1 proposes a lossless data hiding technique for JPEG images based on histogram pairs. It embeds data into the JPEG quantized 8x8 block DCT coefficients and can achieve good performance in terms of PSNR versus payload through manipulating histogram pairs with optimum threshold and optimum region of the JPEG DCT coefficients. It can obtain higher(More)