Learn More
We first consider subsmoothness for a function family and provide formulas of the subdifferential of the pointwise supremum of a family of subsmooth functions. Next, we consider subsmooth infinite and semi-infinite optimization problems. In particular, we provide several dual and primal characterizations for a point to be a sharp minimum or a weak sharp(More)
This paper concerns a generalized equation defined by a closed multifunction between Banach spaces, and we employ variational analysis techniques to provide sufficient and/or necessary conditions for a generalized equation to have the metric subregularity (i.e., local error bounds for the concerned multifunction) in general Banach spaces. Following the(More)
Using variational analysis techniques, we study subsmooth multifunctions in Banach spaces. In terms of the normal cones and coderivatives, we provide some characterizations for such multifunctions to be calm. Sharper results are obtained for Asplund spaces. We also present some exact formulas of the modulus of the calmness. As applications, we provide some(More)
Using variational analysis, we study the linear regularity for a collection of finitely many closed sets. In particular, we extend duality characterizations of the linear regularity for a collection of finitely many closed convex sets to the possibly nonconvex setting. Moreover the sharpest linear regularity constant can also be dually represented under the(More)