Learn More
The apical surfaces of urothelial cells are almost entirely covered with plaques consisting of crystalline, hexagonal arrays of 16 nm uroplakin particles. Although all four uroplakins, when SDS-denatured, can be digested by chymotrypsin, most uroplakin domains in native urothelial plaques are resistant to the enzyme, suggesting a tightly packed structure.(More)
Deep learning algorithms have been shown to perform extremely well on many classical machine learning problems. However, recent studies have shown that deep learning, like other machine learning techniques, is vulnerable to adversarial samples: inputs crafted to force a deep neural network (DNN) to provide adversary-selected outputs. Such attacks can(More)
The differentiation of mammalian urothelium culminates in the formation of asymmetrical unit membrane (AUM). Using gradient centrifugation and detergent wash, we purified milligram quantities of AUMs which, interestingly, contained three major proteins (15, 27, and 47 kDa) that appeared to be identical to the three immunoaffinity purified, putatively(More)
The transmembrane 4 (TM4) superfamily contains many important leukocyte differentiation-related surface proteins including CD9, CD37, CD53, and CD81; tumor-associated antigens including CD63/ME491, CO-029, and SAS; and a newly identified metastasis suppressor gene R2. Relatively little is known, however, about the structure and aggregation state of these(More)
The mammalian bladder epithelium elaborates, as a terminal differentiation product, a specialized plasma membrane called asymmetric unit membrane (AUM) which is believed to play a role in strengthening and stabilizing the urothelial apical surface through its interactions with an underlying cytoskeleton. Previous studies indicate that the outer leaflet of(More)
The asymmetric unit membrane (AUM) is a highly specialized biomembrane elaborated by terminally differentiated urothelial cells. It contains quasi-crystalline arrays of 12-nm protein particles each of which is composed of six dumbbell-shaped subdomains. In this paper we describe the precursor sequence, processing and in vitro membrane insertion properties(More)
The asymmetric unit membrane (AUM) forms numerous plaques covering the apical surface of mammalian urinary bladder epithelium. These plaques contain four major integral membrane proteins called uroplakins Ia, Ib, II and III, which form particles arranged in a well-ordered hexagonal lattice with p6 symmetry and a lattice constant of 16.5 nm. Bovine AUM(More)
Autophagy is a process of cellular self-digestion induced by various forms of starvation. Although nitrogen deficit is a common trigger, some yeast cells induce autophagy upon switch from a rich to minimal media without nitrogen starvation. We show that the amino acid methionine is sufficient to inhibit such non-nitrogen-starvation (NNS)-induced autophagy.(More)
The luminal surface of mouse urothelium in contact with the urine is almost entirely covered with plaques consisting of uroplakin-containing particles that form p6 hexagonal crystals with a center-to-center distance of 16 nm. A combination of quick-freeze/deep-etch images and our previous negative staining data indicate that the head domain of the uroplakin(More)
The asymmetric unit membrane (AUM) forms the apical plaques of mammalian urothelium and is believed to play a role in strengthening the urothelial apical surface thus preventing the cells from rupturing during bladder distention. We have shown previously that purified bovine AUMs contain four major integral membrane proteins: the uroplakins Ia (27 kDa), Ib(More)