Learn More
Quantum entanglement is a very important property of quantum mechanics. It is the foundation of quantum teleportation [1], quantum computation [2–4], quantum cryptography [5], superdense coding [6], etc. Up to now most of the theoretical discussions and experiments are focused on quantum states belonging to two-dimensional states, or qubits [7–10]. In(More)
Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum(More)
Teleportation of quantum gates is a critical step for the implementation of quantum networking and teleportation-based models of quantum computation. We report an experimental demonstration of teleportation of the prototypical quantum controlled-NOT (CNOT) gate. Assisted with linear optical manipulations, photon entanglement produced from parametric(More)
We demonstrate a novel detection scheme for the orbital angular momentum (OAM) of light using circular plasmonic lens. Owing to a division-of-amplitude interference phenomenon between the surface plasmon waves and directly transmitted light, specific intensity distributions are formed near the plasmonic lens surface under different OAM excitations. Due to(More)
Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable(More)
Influence of hole shape on extraordinary optical transmission was investigated using hole arrays consisting of rectangular holes with different aspect ratio. It was found that the transmission could be tuned continuously by rotating the hole array. Further more, a phase was generated in this process, and linear polarization states could be changed to(More)
– We present an experimental evidence that high dimensional orbital angular momentum entanglement of a pair of photons can be survived after a photon-plasmon-photon conversion. The information of spatial modes can be coherently transmitted by surface plasmons. This experiment primarily studies the high dimensional entangled systems based on surface plasmon(More)
Excitation of surface plasmons in a single silver nanowire using higher-order-mode light shows that nanowire waveguide has no request on the spatial mode of the input light, which is determined by its orbital angular momentums (OAM) in the experiment. The excitation efficiency can be controlled by adjusting the light polarization. Experimental result also(More)