Learn More
ATF6 is an endoplasmic reticulum (ER) stress-regulated transmembrane transcription factor that activates the transcription of ER molecular chaperones. Upon ER stress, ATF6 translocates from the ER to the Golgi where it is processed to its active form. We have found that the ER chaperone BiP/GRP78 binds ATF6 and dissociates in response to ER stress. Loss of(More)
Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of(More)
The organization of eukaryotic genomes into distinct structural and functional domains is important for the regulation and transduction of genetic information. Here, we investigated heterochromatin and euchromatin profiles of the entire fission yeast genome and explored the role of RNA interference (RNAi) in genome organization. Histone H3 methylated at(More)
Although amyloid-beta peptide (Abeta) is the neurotoxic species implicated in the pathogenesis of Alzheimer's disease (AD), mechanisms through which intracellular Abeta impairs cellular properties, resulting in neuronal dysfunction, remain to be clarified. Here we demonstrate that intracellular Abeta is present in mitochondria from brains of transgenic mice(More)
ATF6 is an endoplasmic reticulum (ER) transmembrane transcription factor that is activated by the ER stress/unfolded protein response by cleavage of its N-terminal half from the membrane. We find that ER stress induces ATF6 to move from the ER to the Golgi, where it is cut in its luminal domain by site 1 protease. ATF6 contains a single transmembrane domain(More)
Seed germination and flowering initiation are both transitions responding to similar seasonal cues. This study shows that ABSCISIC ACID-INSENSITIVE MUTANT 5 (ABI5), a bZIP transcription factor, which plays an important role in the abscisic acid (ABA)-arrested seed germination, is robustly associated with the floral transition in Arabidopsis. Under long-day(More)
Receptor for Advanced Glycation Endproducts (RAGE), a multiligand receptor in the immunoglobulin superfamily, functions as a signal-transducing cell surface acceptor for amyloid-beta peptide (Abeta). In view of increased neuronal expression of RAGE in Alzheimer's disease, a murine model was developed to assess the impact of RAGE in an Abeta-rich(More)
Amyloid-beta peptide (Abeta) binding alcohol dehydrogenase (ABAD), an enzyme present in neuronal mitochondria, is a cofactor facilitating Abeta-induced cell stress. We hypothesized that ABAD provides a direct link between Abeta and cytotoxicity via mitochondrial oxidant stress. Neurons cultured from transgenic (Tg) mice with targeted overexpression of a(More)
Paired helical filament (PHF) tau is the principal component of neurofibriliary tangles, a characteristic feature of the neurodegenerative pathology in Alzheimer's disease (AD). Post-translational modification of tau, especially phosphorylation, has been considered a major factor in aggregation and diminished microtubule interactions of PHF-tau. Recently,(More)
Increasing evidence demonstrates that melatonin has an anti-inflammatory effect. Nevertheless, the molecular mechanisms remain obscure. In this study, we investigated the effect of melatonin on toll-like receptor 4 (TLR4)-mediated molecule myeloid differentiation factor 88 (MyD88)-dependent and TRIF-dependent signaling pathways in lipopolysaccharide(More)