Xavier de Leval

Learn More
The pathogenesis of numerous cardiovascular, pulmonary, inflammatory, and thromboembolic diseases can be related to arachidonic acid (AA) metabolites. One of these bioactive metabolites of particular importance is thromboxane A(2) (TXA(2)). It is produced by the action of thromboxane synthase on the prostaglandin endoperoxide H(2)(PGH(2)), which results(More)
Arachidonic acid (AA) metabolites are key mediators involved in the pathogenesis of numerous cardiovascular, pulmonary, inflammatory, and thromboembolic diseases. One of these bioactive metabolites of particular importance is thromboxane A(2) (TXA(2)). It is produced by the action of thromboxane synthase on the prostaglandin endoperoxide H(2) (PGH(2)) which(More)
Angiogenesis is a promising target for the therapy of several diseases including cancer. This study was undertaken to characterize the antiangiogenic properties of a series of original dual thromboxane A(2) (TXA(2)) inhibitors derived from torasemide, a marketed loop diuretic with TXA(2) antagonistic properties, by evaluating their effects on human(More)
A series of substituted (+/-)3,5-diphenyl-2-thioxoimidazolin-4-ones was synthesized in order to design new type-2 cyclooxygenase (COX-2) inhibitors. This study has led to molecules which completely inhibit human recombinant COX-2 at 50 microM. Molecular modelling highlighted drug interactions with the active site of both cyclooxygenases and suggested(More)
Cyclooxygenases and lipoxygenase are key enzymes in the arachidonic acid metabolism. Dual inhibitors are drugs able to block both the COX and the 5-LOX metabolic pathways. Compared to COX or LOX pathways single inhibitors, dual inhibitors present at least two major advantages. First, dual inhibitors, by acting on the two major arachidonic acid metabolic(More)
Thromboxane A2 (TXA2) and prostacyclin (PGI2) are two labile products formed from arachidonic acid by the way of cyclooxygenase. An overproduction of thromboxane A2 has been detected in a series of diseases whereby this prostanoid is assumed to contribute to the underlying pathomechanisms by its potent stimulation of platelet aggregation and smooth muscle(More)
Evidence of the existence of two forms of cyclooxygenases and the clinical relevance of COX-2 inhibition led to the development of COX-2 selective NSAIDs. In order to evaluate this selectivity, we have developed and validated an enzymatic method. The precision and reproducibility of the assay were determined and COX-2 selectivity examined using nimesulide(More)
Polyfluorinated carbonic anhydrase inhibitors (CAIs) show very good inhibitory properties against carbonic anhydrase (CA) and excellent in vivo antiglaucoma properties after topical administration in rabbits. Still, the pentafluorinated compounds reported previously by this group (Scozzafava et al. J. Med. Chem. 2000, 43, 4542-4551) showed high reactivity(More)
Evidence exists that a large number of tumor cells such as osteosarcoma cells stimulate platelet aggregation, which can be an early step in the metastatic processes of these tumors. Thromboxane A(2) (TXA(2)) is released during platelet aggregation, and it has been suggested that this release may be pathogenic for tumor metastasis for several reasons:Some(More)
Non-steroidal anti-inflammatory drugs (NSAIDs), which are known to be cyclooxygenase (COX) inhibitors, have been reported to exert anti-proliferative and pro-apoptotic effects on a variety of cancer cells. Since the COX-2 isoform was found to be overexpressed in a many human cancers, a particular attention was paid on the possible use of selective COX-2(More)