Xavier Vernède

Learn More
The crystal structure of the tetrameric α2β2 acetyl-coenzyme A synthase/carbon monoxide dehydrogenase from Moorella thermoacetica has been solved at 1.9 Å resolution. Surprisingly, the two α subunits display different (open and closed) conformations. Furthermore, X-ray data collected from crystals near the absorption edges of several metal ions indicate(More)
The 2.54 Å resolution structure of Ni-Fe hydrogenase has revealed the existence of hydrophobic channels connecting the molecular surface to the active site. A crystallographic analysis of xenon binding together with molecular dynamics simulations of xenon and H2 diffusion in the enzyme interior suggest that these channels serve as pathways for gas access to(More)
BACKGROUND [NiFeSe] hydrogenases are metalloenzymes that catalyze the reaction H2<-->2H+ + 2e-. They are generally heterodimeric, contain three iron-sulfur clusters in their small subunit and a nickel-iron-containing active site in their large subunit that includes a selenocysteine (SeCys) ligand. RESULTS We report here the X-ray structure at 2.15 A(More)
Fe-only hydrogenases, as well as their NiFe counterparts, display unusual intrinsic high-frequency IR bands that have been assigned to CO and CN(-) ligation to iron in their active sites. FTIR experiments performed on the Fe-only hydrogenase from Desulfovibrio desulfuricans indicate that upon reduction of the active oxidized form, there is a major shift of(More)
In anaerobic organisms, the decarboxylation of pyruvate, a crucial component of intermediary metabolism, is catalyzed by the metalloenzyme pyruvate: ferredoxin oxidoreductase (PFOR) resulting in the generation of low potential electrons and the subsequent acetylation of coenzyme A (CoA). PFOR is the only enzyme for which a stable acetyl thiamine diphosphate(More)
Hydrogenases are proteins which metabolize the most simple of chemical compounds, molecular hydrogen, according to the reaction H2<-->2H+ + 2e-. These enzymes are found in many microorganisms of great biotechnological interest such as methanogenic, acetogenic, nitrogen fixing, photosynthetic or sulfate-reducing bacteria. The X-ray structure of a dimeric(More)
A crystal structure of the C-terminal domain of Escherichia coli UvrB (UvrB') has been solved to 3.0 A resolution. The domain adopts a helix-loop-helix fold which is stabilised by the packing of hydrophobic side-chains between helices. From the UvrB' fold, a model for a domain of UvrC (UvrC') that has high sequence homology with UvrB' has been made. In the(More)
R-phycoerythrin, a light-harvesting component from the red algae Gracilaria chilensis, was crystallized by vapour diffusion using ammonium sulfate as precipitant agent. Red crystals grew after one week at 293 K and diffracted to 2.70 A resolution. Three serial macroseeding assays were necessary to grow a second larger crystal to dimensions of 0.68 x 0.16 x(More)
Motions through the energy landscape of proteins lead to biological function. At temperatures below a dynamical transition (150-250 K), some of these motions are arrested and the activity of some proteins ceases. Here, we introduce the technique of temperature-derivative fluorescence microspectrophotometry to investigate the dynamical behavior of single(More)
Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited(More)