Learn More
To achieve a deeper understanding of the brain, scientists, and clinicians use electroencephalography (EEG) and magnetoencephalography (MEG) inverse methods to reconstruct sources in the cortical sheet of the human brain. The influence of structural and electrical anisotropy in both the skull and the white matter on the EEG and MEG source reconstruction is(More)
The recently introduced notion of Finite-Time Lyapunov Exponent to characterize Coherent Lagrangian Structures provides a powerful framework for the visualization and analysis of complex technical flows. Its definition is simple and intuitive, and it has a deep theoretical foundation. While the application of this approach seems straightforward in theory,(More)
This paper presents powerful surface based techniques for the analysis of complex flow fields resulting from CFD simulations. Emphasis is put on the examination of vortical structures. An improved method for stream surface computation that delivers accurate results in regions of intricate flow is presented, along with a novel method to determine boundary(More)
We propose a novel point-based approach to view dependent iso-surface extraction. We introduce a fast visibility query system for the view dependent traversal, which exhibits moderate memory requirements. This technique allows for an interactive interrogation of the full visible woman dataset (1GB) at four to fifteen frames per second on a desktop computer.(More)
The visualization of a three-dimensional viscous flow around an embedded object is typically based on the analysis of its wall shear stress. This vector field defined over the object body exhibits structures that are key to the qualitative evaluation of the surrounding flow. Open separation and attachment lines are of essential interest in aerodynamics due(More)
Vector fields can present complex structural behavior, especially in turbulent computational fluid dynamics. The topological analysis of these datasets reduces the information but one is usually still left with too many details for interpretation. In this paper, we present a simplification approach that removes pairs of critical points from the dataset,(More)
Topology analysis of plane, turbulent vector fields results in visual clutter caused by critical points indicating vortices of finer and finer scales. A simplification can be achieved by merging critical points within a prescribed radius into higher order critical points. After building clusters containing the singularities to merge, the method generates a(More)
We present a method to extract and visualize vortices that originate from bounding walls of three-dimensional time- dependent flows. These vortices can be detected using their footprint on the boundary, which consists of critical points in the wall shear stress vector field. In order to follow these critical points and detect their transformations, affected(More)