Xavier Salvatella

Learn More
NMR spectroscopy plays a major role in the determination of the structures and dynamics of proteins and other biological macromolecules. Chemical shifts are the most readily and accurately measurable NMR parameters, and they reflect with great specificity the conformations of native and nonnative states of proteins. We show, using 11 examples of proteins(More)
Many biochemical processes proceed through the formation of functionally significant intermediates. Although the identification and characterization of such species can provide vital clues about the mechanisms of the reactions involved, it is challenging to obtain information of this type in cases where the intermediates are transient or present only at low(More)
Oligomerization in the heat shock protein (Hsp) 70 family has been extensively documented both in vitro and in vivo, although the mechanism, the identity of the specific protein regions involved and the physiological relevance of this process are still unclear. We have studied the oligomeric properties of a series of human Hsp70 variants by means of(More)
It has been suggested that the fluctuations of the alignment tensor can affect the results of procedures for characterizing the structure and the dynamics of proteins using residual dipolar couplings. We show here that the very significant fluctuations of the steric alignment tensor caused by the dynamics of proteins can be safely ignored when they do not(More)
We review the role conformational ensembles can play in the analysis of biomolecular dynamics, molecular recognition, and allostery. We introduce currently available methods for generating ensembles of biomolecules and illustrate their application with relevant examples from the literature. We show how, for binding, conformational ensembles provide a way of(More)
Long-range correlated motions in proteins are candidate mechanisms for processes that require information transfer across protein structures, such as allostery and signal transduction. However, the observation of backbone correlations between distant residues has remained elusive, and only local correlations have been revealed using residual dipolar(More)
It has been shown recently that an 11-residue peptide fragment of transthyretin, TTR(105-115), can form amyloid fibrils in vitro by adopting an extended beta-strand conformation. We used molecular dynamics simulations on systems of TTR(105-115) peptides, for a total length of about 5 micros, to explore the process of self-assembly and the structures of the(More)
Molecular recognition plays a central role in many biological processes. For enzymatic reactions and slow protein–protein recognition events, turnover rates and on-rates in the millisecond to second time scale have been connected to internal protein dynamics detected with atomic resolution by NMR spectroscopy, and in particular conformational sampling could(More)
Residual dipolar couplings (RDCs) are unique probes of the structural and dynamical properties of biomolecules on the sub-millisecond time scale that can be used as restraints in ensemble molecular dynamics simulations to study the relationship between macromolecular motion and biological function. To date, however, this powerful strategy is applicable only(More)
Identifying the cause of the cytotoxicity of species populated during amyloid formation is crucial to understand the molecular basis of protein deposition diseases. We have examined different types of aggregates formed by lysozyme, a protein found as fibrillar deposits in patients with familial systemic amyloidosis, by infrared spectroscopy, transmission(More)