Learn More
In response to various apoptotic stimuli, Bax, a pro-apoptotic member of the Bcl-2 family, is oligomerized and permeabilizes the mitochondrial outer membrane to apoptogenic factors, including cytochrome c. Bax oligomerization can also be induced by incubating isolated mitochondria containing endogenous Bax with recombinant tBid (caspase-8-cleaved Bid) in(More)
Recently, it was observed that reverse-translocated cytosolic PrP and PrP expressed in the cytosol induce rapid death in neurons (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). In this study, we investigated whether accumulation of prion protein (PrP) in the cytosol is toxic to human neurons in primary culture. We show that in these(More)
Prion protein (PrP) prevents Bcl-2-associated protein X (Bax)-mediated cell death, but the step at which PrP inhibits is not known. We first show that PrP is very specific for Bax and cannot prevent Bak (Bcl-2 antagonist killer 1)-, tBid-, staurosporine- or thapsigargin-mediated cell death. As Bax activation involves Bax conformational change, mitochondrial(More)
Large and unselective permeabilities through the inner membrane of yeast mitochondria have been observed for more than 20 years, but the characterization of these permeabilities, leading to hypothesize the existence of a large-conductance unselective channel in yeast inner mitochondrial membrane, was done only recently by several groups. This channel has(More)
Recent studies have revealed that accumulation of prion protein (PrP) in the cytoplasm results in the production of aggregates that are insoluble in non-ionic detergents and partially resistant to proteinase K. Transgenic mice expressing PrP in the cytoplasm develop severe ataxia with cerebellar degeneration and gliosis, suggesting that cytoplasmic PrP may(More)
The observation that PrP is present in the cytosol of some neurons and non-neuronal cells and that the N-terminal signal peptide is slightly inefficient has brought speculations concerning a possible function of the protein in the cytosol. Here, we show that cells expressing a cytosolic form of PrP termed cyPrP display a large juxtanuclear cytoplasmic RNA(More)
Although there is no consensus regarding the normal function of the prion protein, increasing evidence points towards a role in cellular protection against cell death. We have previously shown that prion protein is a potent inhibitor of Bax-induced apoptosis in human primary neurons and in the breast carcinoma MCF-7 cells. Here, we used the yeast(More)
Plasma membrane cellular prion protein (PrP(C)) is a high-affinity receptor for toxic soluble amyloid-β (Aβ) oligomers that mediates synaptic dysfunction. Secreted forms of PrP(C) resulting from PrP(C) α-cleavage (PrPN1) or shedding (shed PrP(C)) display neuroprotective activity in neuronal cultures and in mouse models of Aβ-induced neuronal dysfunction. In(More)
The normal function of prion protein (PrP) is usually disregarded at the expense of the more fascinating role of PrP in transmissible prion diseases. However, the normal PrP may play an important role in cellular function in the central nervous system, since PrP is highly expressed in neurons and motifs in the sequence of PrP are conserved in evolution. The(More)
To study Bax-induced release of cytochrome c in vivo, we have expressed a cytochrome c-GFP (green fluorescent protein) fusion in Saccharomyces cerevisiae cells null for the expression of the endogenous cytochrome. We show here that cytochrome c-GFP is efficiently localised to mitochondria and able to function as an electron carrier between complexes III and(More)