Learn More
In response to various apoptotic stimuli, Bax, a pro-apoptotic member of the Bcl-2 family, is oligomerized and permeabilizes the mitochondrial outer membrane to apoptogenic factors, including cytochrome c. Bax oligomerization can also be induced by incubating isolated mitochondria containing endogenous Bax with recombinant tBid (caspase-8-cleaved Bid) in(More)
Recent studies have revealed that accumulation of prion protein (PrP) in the cytoplasm results in the production of aggregates that are insoluble in non-ionic detergents and partially resistant to proteinase K. Transgenic mice expressing PrP in the cytoplasm develop severe ataxia with cerebellar degeneration and gliosis, suggesting that cytoplasmic PrP may(More)
The normal function of prion protein (PrP) is usually disregarded at the expense of the more fascinating role of PrP in transmissible prion diseases. However, the normal PrP may play an important role in cellular function in the central nervous system, since PrP is highly expressed in neurons and motifs in the sequence of PrP are conserved in evolution. The(More)
Prion protein (PrP) prevents Bcl-2-associated protein X (Bax)-mediated cell death, but the step at which PrP inhibits is not known. We first show that PrP is very specific for Bax and cannot prevent Bak (Bcl-2 antagonist killer 1)-, tBid-, staurosporine- or thapsigargin-mediated cell death. As Bax activation involves Bax conformational change, mitochondrial(More)
Bax is a proapoptotic member of the Bcl-2 family of proteins. The Bax protein is dormant in the cytosol of normal cells and is activated upon induction of apoptosis. In apoptotic cells, Bax gets translocated to mitochondria, inserts into the outer membrane, oligomerizes and triggers the release of cytochrome c, possibly by channel formation. The BH3(More)
Prion protein can display two conformations: a normal cellular conformation (PrP) and a pathological conformation associated with prion diseases (PrPSc). Three complementary strategies are used by researchers investigating how PrP is involved in the pathogenesis of prion diseases: elucidation of the normal function of PrP, determination of how PrPSc is(More)
Recently, it was observed that reverse-translocated cytosolic PrP and PrP expressed in the cytosol induce rapid death in neurons (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). In this study, we investigated whether accumulation of prion protein (PrP) in the cytosol is toxic to human neurons in primary culture. We show that in these(More)
A fully mature mRNA is usually associated to a reference open reading frame encoding a single protein. Yet, mature mRNAs contain unconventional alternative open reading frames (AltORFs) located in untranslated regions (UTRs) or overlapping the reference ORFs (RefORFs) in non-canonical +2 and +3 reading frames. Although recent ribosome profiling and(More)
Although there is no consensus regarding the normal function of the prion protein, increasing evidence points towards a role in cellular protection against cell death. We have previously shown that prion protein is a potent inhibitor of Bax-induced apoptosis in human primary neurons and in the breast carcinoma MCF-7 cells. Here, we used the yeast(More)
The observation that PrP is present in the cytosol of some neurons and non-neuronal cells and that the N-terminal signal peptide is slightly inefficient has brought speculations concerning a possible function of the protein in the cytosol. Here, we show that cells expressing a cytosolic form of PrP termed cyPrP display a large juxtanuclear cytoplasmic RNA(More)