Learn More
The permeability transition pore (PTP) is a mitochondrial inner membrane Ca(2+)-sensitive channel that plays a key role in different models of cell death. Because functional links between the PTP and the respiratory chain complex I have been reported, we have investigated the effects of rotenone on PTP regulation in U937 and KB cells. We show that rotenone(More)
BACKGROUND In vitro wound healing assays are experimental models commonly used to analyze cell behavior during the migration process. A new approach is proposed for the quantification of cell motility based on an optical flow method. METHODS We assumed that cell-population dynamics can be defined by an a priori affine-motion model. Identified model(More)
Dietary flavonoids have been shown to exert specific cytotoxicity toward some cancer cells, but the precise molecular mechanisms are still not completely understood. In this study, cytotoxic effects of flavones (apigenin and luteolin) on two different cancer cell lines, including human chronic myelogenous erythroleukaemia (K562) and bladder carcinoma(More)
Proliferation and multidrug resistance status are key predictors of therapeutic outcome in acute myeloid leukaemia (AML). Anthracyclines such as daunorubicin (DNR) are typically used to treat AML and can induce drug resistance. The goal of the studies described here was to select a combination of fluorescent probes that could be used in combination with(More)
This paper deals with the spatio-temporal analysis of two-dimensional deformation and motion of cells from time series of digitized video images. A parametric motion approach based on an affine model has been proposed for the quantitative characterization of cellular movements in different experimental areas of cellular biology including spontaneous cell(More)
The arrangement and movement of mitochondria were quantitatively studied in adult rat cardiomyocytes and in cultured continuously dividing non beating (NB) HL-1 cells with differentiated cardiac phenotype. Mitochondria were stained with MitoTracker Green and studied by fluorescent confocal microscopy. High speed scanning (one image every 400 ms) revealed(More)
Flow cytometry combines the advantages of microscopy and biochemical analysis in a single highly sensitive technique for a rapid examination of numerous individual living cells. It has become a potent and essential tool in the studies of the physiology of the whole cell and its organelles. Rhodamine 123 is a vital fluorescent dye used in flow cytometry. As(More)
This study is intended to be the first step of an in situ exploration of the intranuclear DNA distribution by image cytometry (SAMBA) with several fluorochromes. The nuclear DNA content and the chromatin pattern, revealed by ten fluorochromes (HO, DAPI, MA, CMA3, OM, QM, AO, EB, PI, and 7-AMD), were analyzed on mouse hepatocytes fixed by the Boehm-Sprenger(More)
Rhodamine 123 was used to stain and analyze by flow cytometry the mitochondria of rabbit articular chondrocytes. Stationary primary cultures and exponentially growing subcultures were compared to enzymatically released chondrocytes from cartilage. The increase in mitochondrial fluorescence, when chondrocytes are transferred from cartilage to culture(More)
Mitochondria are most important organelles in the survival of eukaryotic aerobic cells because they are the primary producers of ATP, regulators of ion homeostasis or redox state, and producers of free radicals. The key role of mitochondria in the generation of primordial ATP for the survival and proliferation of eukaryotic cells has been proven by(More)