Learn More
The sympathetic, parasympathetic and enteric ganglia are the main components of the peripheral autonomic nervous system, and are all derived from the neural crest. The factors needed for these structures to develop include the transcription factor Mash1, the glial-derived neurotrophic factor GNDF and its receptor subunits, and the neuregulin signalling(More)
Recent evidence suggests that specific families of homeodomain transcription factors control the generation and survival of distinct neuronal types. We had previously characterized the homeobox gene Phox2a, which is expressed in differentiating neurons of the central and peripheral autonomic nervous system as well as in motor nuclei of the hindbrain.(More)
Asymmetric localization is a prerequisite for inscuteable (insc) to function in coordinating and mediating asymmetric cell divisions in Drosophila. We show here that Partner of Inscuteable (Pins), a new component of asymmetric divisions, is required for Inscuteable to asymmetrically localize. In the absence of pins, Inscuteable becomes cytoplasmic and(More)
neurogenin2 encodes a neural-specific basic helix-loop-helix (bHLH) transcription factor related to the Drosophila proneural factor atonal. We show here that the murine ngn2 gene is essential for development of the epibranchial placode-derived cranial sensory ganglia. An ngn2 null mutation blocks the delamination of neuronal precursors from the placodes,(More)
Phox2a is a vertebrate homeodomain protein expressed in subsets of differentiating neurons. Here, we show that it is essential for proper development of the locus coeruleus, a subset of sympathetic and parasympathetic ganglia and the VIIth, IXth, and Xth cranial sensory ganglia. In the sensory ganglia, we have identified two differentiation blocks in(More)
Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any(More)
To maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation(More)
The spatio-temporal regulation of symmetrical as opposed to asymmetric cell divisions directs the fate and location of cells in the developing CNS. In invertebrates, G-protein regulators control spindle orientation in asymmetric divisions, which generate progeny with different identities. We investigated the role of the G-protein regulator LGN (also called(More)
The orientation of the mitotic spindle has been proposed to control cell fate choices, tissue architecture, and tissue morphogenesis. Here, we review the mechanisms regulating the orientation of the axis of division and cell fate choices in classical models of asymmetric cell division. We then discuss the mechanisms of mitotic spindle orientation in(More)
We have investigated the specification of noradrenergic neurotransmitter identity in neural crest stem cells (NCSCs). Retroviral expression of both wild-type and dominant-negative forms of the paired homeodomain transcription factor Phox2a indicates a crucial and direct role for this protein (and/or the closely related Phox2b) in the regulation of(More)