Xavier Grau-Bové

Learn More
Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or(More)
Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified(More)
The Opisthokonta are a eukaryotic supergroup divided in two main lineages: animals and related protistan taxa, and fungi and their allies [1, 2]. There is a great diversity of lifestyles and morphologies among unicellular opisthokonts, from free-living phagotrophic flagellated bacterivores and filopodiated amoebas to cell-walled osmotrophic parasites and(More)
The posttranslational modification of proteins by the ubiquitination pathway is an important regulatory mechanism in eukaryotes. To date, however, studies on the evolutionary history of the proteins involved in this pathway have been restricted to E1 and E2 enzymes, whereas E3 studies have been focused mainly in metazoans and plants. To have a wider(More)
The origin of the eukaryotic cell is one of the most important transitions in the history of life. However, the emergence and early evolution of eukaryotes remains poorly understood. Recent data have shown that the last eukaryotic common ancestor (LECA) was much more complex than previously thought. The LECA already had the genetic machinery encoding the(More)
Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest(More)
Single-cell genomics (SCG) appeared as a powerful technique to get genomic information from uncultured organisms. However, SCG techniques suffer from biases at the whole genome amplification step that can lead to extremely variable numbers of genome recovery (5-100%). Thus, it is unclear how useful can SCG be to address evolutionary questions on uncultured(More)
The modification of adenosine to inosine at position 34 of tRNA anticodons has a profound impact upon codon-anticodon recognition. In bacteria, I34 is thought to exist only in tRNAArg, while in eukaryotes the modification is present in eight different tRNAs. In eukaryotes, the widespread use of I34 strongly influenced the evolution of genomes in terms of(More)
Ubiquitination is a relevant cell regulatory mechanism to determine protein fate and function. Most data has focused on the role of ubiquitin as a tag molecule to target substrates to proteasome degradation, and on its impact in the control of cell cycle, protein homeostasis and cancer. Only recently, systematic assays have pointed to the relevance of the(More)
  • 1