Learn More
The anchor cell/ventral uterine precursor cell (AC/VU) decision in Caenorhabditis elegans is a canonical example of lin-12/Notch-mediated lateral specification. Two initially equivalent cells interact via the receptor LIN-12 and its ligand LAG-2, so that one becomes the AC and the other a VU. During this interaction, feedback loops amplify a small(More)
HLH-2 is the Caenorhabditis elegans ortholog of the Drosophila Daughterless and mammalian E basic helix-loop-helix (bHLH) transcriptional activators that function during diverse events during animal development. HLH-2 has been implicated in cell fate specification in different neural lineages and in the LIN-12/Notch-mediated anchor cell (AC)/ventral uterine(More)
Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an(More)
Animal development is remarkably robust; cell fates are specified with spatial and temporal precision despite physiological and environmental contingencies. Favorable conditions cause Caenorhabditis elegans to develop rapidly through four larval stages (L1-L4) to the reproductive adult. In unfavorable conditions, L2 larvae can enter the developmentally(More)
Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely(More)
Precise staging of Caenorhabditis elegans is essential for developmental studies in different environmental conditions. In favorable conditions, larvae develop continuously through four larval stages separated by molting periods. Distinguishing molting from intermolt larvae has been achieved using transgenes with molting reporters, therefore requiring(More)
The Caenorhabditis elegans vulval precursor cells (VPCs) offer a paradigm for investigating how multipotency of progenitor cells is maintained during periods of quiescence. The VPCs are born in the first larval stage. When hermaphrodites are grown under favorable conditions, the EGF-mediated "inductive" signal and the LIN-12/Notch-mediated "lateral" signal(More)