Learn More
Mesoderm induction has been studied in many systems and some of the factors involved have been identified. Although the heart is mesodermal in origin, the molecular basis of heart development is essentially unknown. The Drosophila heart is a simple tubular structure similar to the early heart tube in vertebrates. The homeobox gene, tinman, has been shown to(More)
We have combined genetic experiments and a targeted misexpression approach to examine the role of the gap gene giant (gt) in patterning anterior regions of the Drosophila embryo. Our results suggest that gt functions in the repression of three target genes, the gap genes Krüppel (Kr) and hunchback (hb), and the pair-rule gene even-skipped (eve). The(More)
Heart development in both vertebrates and Drosophila is initiated by bilaterally symmetrical primordia that may be of equivalent embryological origin: the anterior lateral plate mesoderm in vertebrates and the dorsal-most mesoderm in arthropods. These mesodermal progenitors then merge into a heart tube at the ventral midline (vertebrates) or the dorsal(More)
Localized gene expression patterns are critical for establishing body plans in all multicellular animals. In Drosophila, the gap gene hunchback (hb) is expressed in a dynamic pattern in anterior regions of the embryo. Hb protein is first detected as a shallow maternal gradient that prevents expression of posterior gap genes in anterior regions. hb mRNA is(More)
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is(More)
  • 1