Learn More
The institute for Nanoscale science and Technology brings together four centers of excellence: The center for Nanomaterials, the center for BioMeMs and Nanobiosystems, the center for Nanomedicine, and the center for Nanophotonics, composed of faculty from the Colleges of Engineering, Arts and Sciences, and Medicine. The Institute researchers have access to(More)
Analog neural nets for constrained optimization are proposed as an analogue of Newton's algorithm in numerical analysis. The neural model is globally stable and can converge to the constrained stationary points. Nonlinear neurons are introduced into the net, making it possible to solve optimization problems where the variables take discrete values, i.e.,(More)
Iron oxide nanoparticles have been explored recently for their beneficial applications in many biomedical areas, in environmental remediation, and in various industrial applications. However, potential risks have also been identified with the release of nanoparticles into the environment. To study the ecological effects of iron oxide nanoparticles on(More)
The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency(More)
The onset of distal metastasis, which underlies the high mortality of breast cancers, warrants substantial studies to depict its molecular basis. Nuclear factor of activated T cells 5 (NFAT5) is upregulated in various malignancies and is critically involved in migration and invasion of neoplastic cells. Nevertheless, the metastasis-related events(More)
Volatile anesthetic isoflurane (ISO) has immunomodulatory effects. The fungal component zymosan (ZY) induces inflammation through toll-like receptor 2 or dectin-1 signaling. We investigated the molecular actions of subanesthetic (0.7%) ISO against ZY-induced inflammatory activation in murine Kupffer cells (KCs), which are known as the resident macrophages(More)