Learn More
Members of the transforming growth factor (TGF)-beta superfamily have been shown to play a variety of important roles in embryogenesis, including dorsal and ventral mesoderm induction. The tumor suppressor SMAD4, also known as DPC4, is believed to be an essential factor that mediates TGF-beta signals. To explore functions of SMAD4 in development, we have(More)
Previous linkage studies in Mexican-Americans localized a major susceptibility locus for type 2 diabetes, NIDDM1, to chromosome 2q. This evidence for linkage to type 2 diabetes was recently found to be associated with a common G-->A polymorphism (UCSNP-43) within the CAPN10 gene. The at-risk genotype was homozygous for the UCSNP-43 G allele. In the present(More)
Pestalotiopsis microspora was isolated from the inner bark of a small limb of Himalayan yew, Taxus wallachiana, and was shown to produce taxol in mycelial culture. Taxol was identified by spectroscopic and chromatographic comparisons with authentic taxol. Optimal taxol production occurred after 2-3 weeks in still culture at 23 degrees C. [14C]Acetate and(More)
We report on a large gene bank of Fusarium isolates established by a broad survey conducted in 2005 in which infected barley ears were collected in 23 counties of seven provinces and two municipalities along the Yangtze River in China. In total, 1,894 single spore isolates were obtained. The isolates were characterized at the species level by a newly(More)
The generation of animals lacking SMAD proteins, which transduce signals from transforming growth factor-beta (TGF-beta), has made it possible to explore the contribution of the SMAD proteins to TGF-beta activity in vivo. Here we report that, in contrast to predictions made on the basis of the ability of exogenous TGF-beta to improve wound healing,(More)
smad genes constitute a family of nine members whose products serve as intracellular mediators of transforming growth factor beta signals. SMAD2, which is a tumor suppressor involved in colorectal and lung cancer, has been shown to induce dorsal mesoderm in Xenopus laevis in response to transforming growth factor beta and activins. The smad2 gene is(More)
The Notch family of proteins consists of transmembrane receptors that play a critical role in the determination of cell fate. Genetic studies in Caenorhabditis elegans suggest that the presenilin proteins, which are associated with familial Alzheimer's disease, regulate Notch signaling. Here we show that proteolytic release of the Notch-1 intracellular(More)
Diphosphoinositol pentakisphosphate (PP-InsP5 or 'InsP7') and bisdiphosphoinositol tetrakisphosphate ([PP]2-InsP4 or 'InsP8') are the most highly phosphorylated members of the inositol-based cell signaling family. We have purified a rat hepatic diphosphoinositol polyphosphate phosphohydrolase (DIPP) that cleaves a beta-phosphate from the diphosphate groups(More)
The SNF1 protein kinase has been widely conserved in plants and mammals. In Saccharomyces cerevisiae, SNF1 is essential for expression of glucose-repressed genes in response to glucose deprivation. Previous studies supported a role for SNF1 in relieving transcriptional repression. Here, we report evidence that SNF1 modulates function of a transcriptional(More)
The transforming growth factor-beta (TGF-beta) signals are mediated by a family of at least nine SMAD proteins, of which SMAD5 is thought to relay signals of the bone morphogenetic protein (BMP) pathway. To investigate the role of SMAD5 during vertebrate development and tumorigenesis, we disrupted the Smad5 gene by homologous recombination. We showed that(More)