Learn More
The Condon approximation is widely applied in molecular and condensed matter spectroscopy and states that electronic transition dipoles are independent of nuclear positions. This approximation is related to the Franck-Condon principle, which in its simplest form holds that electronic transitions are instantaneous on the time scale of nuclear motion. The(More)
Single-walled carbon nanotubes (SWNTs) are a family of molecules that have the same cylindrical shape but different chiralities. Many fundamental studies and technological applications of SWNTs require a population of tubes with identical chirality that current syntheses cannot provide. The SWNT sorting problem-that is, separation of a synthetic mixture of(More)
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a(More)
The ability to sort mixtures of carbon nanotubes (CNTs) based on chirality has recently been demonstrated using special short DNA sequences that recognize certain matching CNTs of specific chirality. In this work, we report on a study of the relationship between recognition sequences and the strength of their binding to the recognized CNT. We have chosen(More)
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting(More)
Single-walled carbon nanotubes (SWNTs) have unique photophysical properties but low fluorescence efficiency. We have found significant increases in the fluorescence efficiency of individual DNA-wrapped SWNTs upon addition of reducing agents, including dithiothreitol, Trolox, and β-mercaptoethanol. Brightening was reversible upon removal of the reducing(More)
The overall level of ultrasonication-induced DNA damage is reduced in the presence of single-wall carbon nanotubes (SWCNTs), particularly for DNA lesions formed by one-electron reduction of intermediate radicals. The protective role of SWCNTs observed in this work suggests a contrary view to the general idea that carbon nanotubes have damaging effects on(More)
Chirality-controlled synthesis of single-wall carbon nanotubes with predefined chiralities has been an important but elusive goal for almost two decades. Here we demonstrate a general strategy for producing carbon nanotubes with predefined chiralities by using purified single-chirality nanotubes as seeds for subsequent metal catalyst free growth, resembling(More)
We exploit an energy level crossover effect [Haroz et al., Phys. Rev. B 77, 125405 (2008)] to probe quantum interference in the resonance Raman response from carbon nanotube samples highly enriched in the single semiconducting chiralities of (8,6), (9,4), and (10,5). UV Raman excitation profiles of G-band spectra reveal unambiguous signatures of(More)
The armchair carbon nanotube is an ideal system to study fundamental physics in one-dimensional metals and potentially a superb material for applications such as electrical power transmission. Synthesis and purification efforts to date have failed to produce a homogeneous population of such a material. Here we report evolutionary strategies to find DNA(More)