Learn More
Taurine is found in bone tissue, but its function in skeletal tissue is not fully understood. The present study was undertaken to investigate regulation of gene expression of connective tissue growth factor (CTGF), and the roles of mitogen-activated protein kinases (MAPKs) in murine osteoblast MC3T3-E1 cells treated with taurine. Western blot analysis(More)
We study the effect of bacterial motion on micron-scale beads in a freely suspended soap film. Given the sizes of bacteria and beads, the geometry of the experiment is quasi-two-dimensional. Large positional fluctuations are observed for beads as large as 10 microm in diameter, and the measured mean-square displacements indicate superdiffusion in short(More)
Taurine influences bone metabolism and is taken up by cells via a specific transport system, the taurine transporter (TAUT). We report a link between taurine and bone homeostasis by demonstrating transcription and translation of TAUT in bone-forming cells. TAUT was expressed in human primary osteoblasts, the human osteosarcoma osteoblast-like cell line(More)
Visfatin (also known as pre-B cell colony-enhancing factor or PBEF) is a novel adipocytokine that is highly expressed in visceral fat and upregulated in obesity and type 2 diabetes mellitus. Visfatin binds to and activates the insulin receptor (IR), thereby exerting insulin-mimetic effects in various cell lines. IR has been detected in osteoblasts, which is(More)
Tissue inhibitor of metalloproteinases (TIMPs) plays an essential role in the regulation of bone metabolism. Here we report that recombinant tissue metalloproteinase inhibitor-3 (TIMP-3) protein induces the apoptosis of MC3T3-E1 osteoblasts. Cell apoptosis was detected by sandwich-enzyme-immunoassay. Fas and Fasl protein levels were determined by Western(More)
Osteoblast-derived matrix metalloproteinase (MMP)–2, MMP–1 and tissue inhibitor of metalloproteinase (TIMP)–1 have been shown to play a role in bone metabolism by degrading the bone matrix. The present study was performed to investigate the relationships between serum MMP–2, MMP–1, or TIMP–1 levels and bone mineral density (BMD), as well as bone biochemical(More)
Omentin-1 inhibited osteoblast differentiation in vitro. In co-culture systems of osteoblasts and osteoclast precursors, omentin-1 reduced osteoclast formation by stimulating osteoprotegerin (OPG) and inhibiting receptor activator for nuclear factor κB ligand (RANKL) production in osteoblasts. In vivo, adenovirus-mediated overexpression of omentin-1(More)
The purpose of this study was to investigate the transport characteristics and mechanisms for discovering the possible causes of the low bioavailability of astragaloside IV and to develop an absorption enhancement strategy. Caco-2 cells used as the in vitro model. Results showed a low permeability coefficient (3.7×l0−8cm/s for transport from the AP to BL(More)
The relationship between the levels of gonadotropic hormones and bone metabolism in Chinese adult women is unclear. Our research shows that a significant positive correlation exists between the levels of gonadotropic hormones and various bone turnover indicators. Follicle-stimulating hormone (FSH) has been found to have a greater influence on all types of(More)
Establishing reference databases generally requires a large sample size to achieve reliable results. Our study revealed that the varying sample size from hundreds to thousands of individuals has no decisive effect on the bone mineral density (BMD) reference curve, peak BMD, and diagnosing osteoporosis. It provides a reference point for determining the(More)