X. K. Zhang

Learn More
Thyroid hormones and retinoic acid function through nuclear receptors that belong to the steroid/thyroid-hormone receptor superfamily. Thyroid hormone receptors (TRs) and retinoic acid receptors (RARs) require auxiliary nuclear proteins for efficient DNA binding. Here we report that retinoid X receptors RXR alpha is one of these nuclear proteins. RXR alpha(More)
Retinoid response pathways are mediated by two classes of receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). A central question is whether distinct response pathways are regulated by these two classes of receptors. The observation that the stereoisomer 9-cis-retinoic acid binds with high affinity to RXRs suggested that this(More)
Both thyroid hormone (T3) and retinoic acid signal essential steps in development, differentiation and morphogenesis. Specific nuclear receptors for these ligands have recently been cloned. Previously we have noted a close homology between the DNA-binding domains of the epsilon-retinoic acid receptor (RAR-epsilon, also designated RAR-beta), the thyroid(More)
Many essential biological pathways, including cell growth, development, and metabolism, are regulated by thyroid hormones (THs). TH action is mediated by intracellular receptors that belong to a large family of ligand-dependent transcription factors, including the steroid hormone and retinoic acid receptors. So far it has been assumed that TH receptors(More)
6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN or CD437), originally identified as a retinoic acid receptor gamma-selective retinoid, was previously shown to induce growth inhibition and apoptosis in human breast cancer cells. In this study, we investigated the role of AHPN/CD437 and its mechanism of action in human lung cancer cell(More)
Biologic responses to retinoids and thyroid hormones are mediated by their intracellular receptor proteins. Many exciting advances have been made recently in understanding the molecular mechanism by which these receptor proteins operate. In contrast to the steroid hormone receptors that function predominantly as homodimers, thyroid hormone receptors(More)
Four new metabolites, including three new oblongolides named C1, P1, and X1 (1-3) and 6-hydroxyphomodiol (10), along with eight known compounds--oblongolides B (4), C (5), D (6), O (7), P (8) and U (9), (3R,4aR,5S,6R)-6-hydroxy-5-methylramulosin (11), and (3R)-5-methylmellein (12)--were isolated from the endophytic fungal strain Phomopsis sp. XZ-01 of(More)
Thyroid hormone receptors (TRs) are nuclear proteins that regulate gene expression through interactions with specific DNA sequences. It is well known that thyroid hormones have critical functions in the control of normal brain development. In the rat brain, at least three mRNA species are generated by differential processing of the TR alpha transcript. Only(More)