Learn More
K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role(More)
The membrane potential (Em) of pulmonary arterial smooth muscle cells (PASMCs) regulates pulmonary arterial tone by controlling voltage-gated Ca2+ channel activity, which is a major contributor to [Ca2+]i. The resting membrane is mainly permeable to K+; thus, the resting Em is controlled by K+ permeability through sarcolemmal K+ channels. At least three K+(More)
Chronic infection, such as Helicobacter pylori infection, has been associated with the development of gastric cancer (GC). Pathogen-associated molecular patterns can trigger inflammatory responses via Toll-like receptors (TLRs) in GC. Here we showed that Toll-like receptor 4 (TLR4) was highly expressed in GC cells and was associated with the aggressiveness(More)
The electrophysiological properties of cultured single vascular smooth muscle (VSM) cells from rat pulmonary (PA) and mesenteric (MA) arteries were studied using the whole cell patch-clamp technique. Cells were studied at 3-7 days as primary cultures, or were replated after 10-20 days and subcultured for 2-5 days. In the standard physiological bath solution(More)
Many agonists induce vasoconstriction by releasing intracellularly stored Ca2+ and promoting Ca2+ influx. Activation of Ca(2+)-activated Cl- (ClCa) channels may be a critical mechanism by which a rise in intracellular free Ca2+ concentration ([Ca2+]i) causes membrane depolarization that serves to sustain the elevated [Ca2+]i and maintain vascular tone. In(More)
Increase in intracellular adenosine 3', 5'-cyclic monophosphate (cAMP) is a common pathway for many clinically used drugs to cause pulmonary artery (PA) relaxation. Activity of sarcolemmal K+ and Cl(-)-channels is an important determinant of membrane potential (Em), which, in turn, plays a critical role in regulating pulmonary vascular tone. Whether K+ and(More)
The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a)(More)