X.-C. Zhang

Learn More
A retrospective cohort study was carried out in 1982-1983 among 28,460 benzene-exposed workers (15,643 males, 12,817 females) from 233 factories and 28,257 control workers (16,621 males, 12,366 females) from 83 factories in 12 large cities in China. All-cause mortality was significantly higher among the exposed (265.46/100,000 person-years) than among the(More)
Inflammatory-related activation and sensitization of meningeal nociceptors is believed to play a key role in promoting the intracranial throbbing pain of migraine. We have shown recently that mast cell activation and various mast cell-derived inflammatory mediators can promote activation and sensitization of meningeal nociceptors. Mast cell tryptase has(More)
Planar electric split ring resonator (eSRR) metamaterials and their corresponding inverse structures are designed and characterized computationally and experimentally utilizing finite element modeling and THz time domain spectroscopy. A complementary response is observed in transmission. Specifically, for the eSRRs a decrease in transmission is observed at(More)
We have previously observed that migraine attacks impervious to triptan therapy were readily terminated by subsequent i.v. administration of the non-steroidal anti-inflammatory drug (NSAID) ketorolac. Since such attacks were associated with periorbital allodynia--a symptom of central sensitization--we examined whether infusion of the NSAID naproxen can(More)
We present novel metamaterial structures based upon various planar wallpaper groups, in both hexagonal and square unit cells. An investigation of metamaterials consisting of one, two, and three unique sub-lattices with resonant frequencies in the terahertz (THz) was performed. We describe the theory, perform simulations, and conduct experiments to(More)
We describe the electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays fabricated on doped semiconductor substrates. The hybrid metal-semiconductor forms a Schot-tky diode structure, where the active depletion region modifies the substrate conductivity in real-time by applying an external voltage bias. This(More)
Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an(More)
Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscat-tered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle(More)
We demonstrate a metamaterials-based THz broadband polarization rotator which is able to rotate linearly polarized THz wave by 90 degree within a wide frequency range (0.44 to 0.76 THz). The device is characterized both theoretically and experimentally. Analyses show that the multiple-plasmon-resonance is the key for the broadband feature and the(More)
We have investigated the broadband terahertz (THz) optical properties of nanoporous silicon samples with different porosities and the ultrafast carrier dynamics of photogenerated charge carriers in these materials. Following photoexcitation, we observe a fast carrier recovery time consisting of two dominant recombination processes with decay constants below(More)
  • 1