Learn More
Huntington disease (HD) is caused by expansion of a glutamine repeat in the amino-terminal region of huntingtin. Despite its widespread expression, mutant huntingtin induces selective neuronal loss in striatal neurons. Here we report that, in mutant mice expressing HD repeats, the production and aggregation of N-terminal huntingtin fragments preferentially(More)
Mice representing precise genetic replicas of Huntington's disease (HD) were made using gene targeting to replace the short CAG repeat of the mouse Huntington's disease gene homolog (HDH:) with CAG repeats within the length range found to cause HD in humans. Mice with alleles of approximately 150 units in length exhibit late-onset behavioral and(More)
The data we report in this study concern the types, location, numbers, forms, and composition of microscopic huntingtin aggregates in brain tissues from humans with different grades of Huntington's disease (HD). We have developed a fusion protein antibody against the first 256 amino acids that preferentially recognizes aggregated huntingtin and labels many(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanding polyglutamine repeat in the IT15 or huntingtin gene. Although this gene is widely expressed and is required for normal development, the pathology of HD is restricted to the brain, for reasons that remain poorly understood. The huntingtin gene product is(More)
Huntingtin is the protein product of the gene for Huntington's disease (HD) and carries a polyglutamine repeat that is expanded in HD (>36 units). Huntingtin-associated protein (HAP1) is a neuronal protein and binds to huntingtin in association with the polyglutamine repeat. Like huntingtin, HAP1 has been found to be a cytoplasmic protein associated with(More)
Huntington's disease (HD) is characterized by the selective loss of striatal projection neurons. In early stages of HD, neurodegeneration preferentially occurs in the lateral globus pallidus (LGP) and substantia nigra (SN), two regions in which the axons of striatal neurons terminate. Here we report that in mice expressing full-length mutant huntingtin and(More)
The clinical evaluation of neural transplantation as a potential treatment for Huntington's disease (HD) was initiated in an attempt to replace lost neurons and improve patient outcomes. Two of 3 patients with HD reported here, who underwent neural transplantation containing striatal anlagen in the striatum a decade earlier, have demonstrated marginal and(More)
Huntington's disease (HD) is caused by expansion of a glutamine repeat in huntingtin. Mutant huntingtin contains 36-55 repeats in adult HD patients and >60 repeats in juvenile HD patients. An N-terminal fragment of mutant huntingtin forms aggregates in neuronal nuclei in the brains of transgenic mice and HD patients. Aggregation of expanded polyglutamine is(More)
Neural and stem cell transplantation is emerging as a potential treatment for neurodegenerative diseases. Transplantation of specific committed neuroblasts (fetal neurons) to the adult brain provides such scientific exploration of these new potential therapies. Huntington's disease (HD) is a fatal, incurable autosomal dominant (CAG repeat expansion of(More)
Huntington's Disease (HD) is notable for selective neuronal vulnerability in the basal ganglia and cerebral cortex. We have investigated in human and rodent tissues the expression of the gene (IT15) whose mutation causes HD. IT15 is widely expressed, with highest levels of expression in brain, but also in lung, testis, ovary, and other tissues. Within the(More)