Learn More
  • Jia-Lin Lin, George N Kiladis, Brian E Mapes, Klaus M Weickmann, Kenneth R Sperber, Wuyin Lin +6 others
  • 2006
This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden–Julian oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model's twentieth-century(More)
Next-generation scientific applications feature complex workflows comprised of many computing modules with intricate inter-module dependencies. Supporting such scientific workflows in wide-area networks especially Grids and optimizing their performance are crucial to the success of collaborative scientific discovery. We develop a Scientific Workflow(More)
  • Shaocheng Xie, Minghua Zhang, James S Boyle, Richard T Cederwall, Gerald L Potter, Wuyin Lin +6 others
  • 2004
[1] This study implements a revised convective triggering condition in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, Version 2 (CAM2), model to reduce its excessive warm season daytime precipitation over land. The new triggering mechanism introduces a simple dynamic constraint on the initiation of convection that emulates(More)
  • Shaocheng Xie, Minghua Zhang, Mark Branson, Richard T Cederwall, Anthony D Del Genio, Zachary A Eitzen +14 others
  • 2009
[1] This study quantitatively evaluates the overall performance of nine single-column models (SCMs) and four cloud-resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the spring 2000 Cloud Intensive Observational Period at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The evaluation data are(More)
Next-generation computational sciences feature large-scale workflows of many computing modules that must be deployed and executed in distributed network environments. With limited computing resources, it is often unavoidable to map multiple workflow modules to the same computer node with possible concurrent module execution, whose scheduling may(More)
A 60 h case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations) at the ARM Climate(More)
  • 1