Wubishet A. Bekele

Learn More
Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map(More)
Genotyping-by-sequencing (GBS), and related methods, are based on high-throughput short-read sequencing of genomic complexity reductions followed by discovery of single nucleotide polymorphisms (SNPs) within sequence tags. This provides a powerful and economical approach to whole-genome genotyping, facilitating applications in genomics, diversity analysis,(More)
BACKGROUND Sorghum (Sorghum bicolor) is one of the most important cereal crops globally and a potential energy plant for biofuel production. In order to explore genetic gain for a range of important quantitative traits, such as drought and heat tolerance, grain yield, stem sugar accumulation, and biomass production, via the use of molecular breeding and(More)
With its small, diploid and completely sequenced genome, sorghum (Sorghum bicolor L. Moench) is highly amenable to genomics-based breeding approaches. Here, we describe the development and testing of a robust single-nucleotide polymorphism (SNP) array platform that enables polymorphism screening for genome-wide and trait-linked polymorphisms in genetically(More)
Sorghum is a promising alternative to maize for bioenergy production in Europe; however, its use is currently limited by poor adaptation to low temperatures during and after germination. We collected multi-trait phenotype data under optimal and suboptimal temperatures in a genetically diverse recombinant inbred line (RIL) mapping population showing(More)
Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype-phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the(More)
Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this(More)
Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one(More)
Promising genome regions for improving cold tolerance of sorghum were identified on chromosomes SBI-01, SBI-03, SBI-07, and SBI-10. Chlorophyll fluorescence had no major effect on growth rates at low temperatures. Developing fast growing sorghum seedlings is an important breeding goal for temperate climates since low springtime temperatures are resulting in(More)
Complex polyploid crop genomes can be recalcitrant towards conventional DNA sequencing approaches for allele mining in candidate genes for valuable traits. In the past, this has greatly complicated the transfer of knowledge on promising candidate genes from model plants to even closely related polyploid crops. Next-generation sequencing offers diverse(More)