Learn More
S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin(More)
The receptor for advanced glycation end products (RAGE), a multi-ligand member of the immunoglobulin superfamily of cell surface molecules, interacts with distinct molecules implicated in homeostasis, development and inflammation, and certain diseases such as diabetes and Alzheimer's disease. Engagement of RAGE by a ligand triggers activation of key cell(More)
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the(More)
The receptor for advanced glycation end products (RAGE) and its proinflammatory S100/calgranulin ligands are enriched in joints of subjects with rheumatoid arthritis (RA) and amplify the immune/inflammatory response. In a model of inflammatory arthritis, blockade of RAGE in mice immunized and challenged with bovine type II collagen suppressed clinical and(More)
Diabetic nephropathy ensues from events involving earliest changes in the glomeruli and podocytes, followed by accumulation of extracellular matrix in the mesangium. Postulated mechanisms include roles for vascular endothelial growth factor (VEGF), produced by podocytes and contributing to enhanced excretion of urinary albumin and recruitment/activation of(More)
PURPOSE The importance of VEGF in stimulating neovascular age-related macular degeneration (AMD) is well-recognized, but the initiating factors that induce local upregulation of VEGF remain unclear. The current study was conducted to test the hypothesis that activation of RAGE (receptor for advanced glycation end products [AGEs]) by its ligands, including(More)
BACKGROUND Previous studies suggested that blockade of RAGE in diabetic apolipoprotein (apo) E-null mice suppressed early acceleration of atherosclerosis. A critical test of the potential applicability of RAGE blockade to clinical settings was its ability to impact established vascular disease. In this study, we tested the hypothesis that RAGE contributed(More)
The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury in the isolated perfused heart. To test the hypothesis that RAGE-dependent mechanisms modulated responses to I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD),(More)
BACKGROUND Advanced glycation end-products (AGEs) have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE) and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes(More)
Receptor for advanced glycation end-products (RAGE), and two of its ligands, AGE and EN-RAGEs (members of the S100/calgranulin family of pro-inflammatory cytokines), display enhanced expression in slowly resolving full-thickness excisional wounds developed in genetically diabetic db+/db+ mice. We tested the concept that blockade of RAGE, using soluble(s)(More)