Learn More
During rat cortical development, when neurons migrate from the ventricular zone to the cortical plate, GABA localizes within the target destinations of migratory neurons. At this time, cells in germinal zones and along migratory pathways express GABA receptor subunit transcripts, implying that in vivo, GABA may be a chemoattractant. We used an in vitro(More)
Cyclin-dependent kinase 5 (cdk5) is a serine/threonine kinase activated by associating with its neuron-specific activators p35 and p39. Analysis of cdk5(-/-) and p35(-/-) mice has demonstrated that both cdk5 and p35 are essential for neuronal migration, axon pathfinding and the laminar configuration of the cerebral cortex, suggesting that the cdk5-p35(More)
Increasing evidence has shown that some neurotransmitters act as growth-regulatory signals during brain development. Here we report a role for the classical neurotransmitter acetylcholine (ACh) to stimulate proliferation of neural stem cells and stem cell-derived progenitor cells during neural cell lineage progression in vitro. Neuroepithelial cells in the(More)
The developmental stage at which nerve cells initially express specific neurotransmitters and their corresponding receptors remains elusive. In the present study, the distribution patterns of transcripts for the GABA-synthesizing enzyme, glutamate decarboxylase (GAD67), and specific GABAA receptor subunits were examined in the proliferative zone of the rat(More)
GABA (gamma-amino butyric acid), a fast-acting synaptic transmitter in the mature CNS, is synthesized from glutamate by GAD (glutamic acid decarboxylase). We have developed an ultrasensitive PCR technique to quantify the expression of GAD-related mRNAs during the development of the rat cervical spinal cord and have localized them using in situ(More)
The development of GABAergic neurons in the spinal cord of the rat has been investigated by immunocytochemical staining of frozen sections with anti-gamma-aminobutyric acid (GABA) antiserum. In the cervical cord, GABA-immunoreactive fibers first appeared at embryonic day (E) 13 in the presumptive white matter within the ventral commissure, ventral(More)
Neurons produce complex patterns of electrical spikes, which are often clustered in bursts. The patterns of spikes and bursts can change substantially when neurons are exposed to toxins and chemical agents. For that reason, characterization of these patterns is important for the development of neuron-based biosensors for environmental threat exposure. Here,(More)
During development of the central nervous system (CNS) the gene that encodes the 67 kDa form of glutamic acid decarboxylase (GAD) undergoes alternative splicing. The alternatively spliced variants include an exon (referred to as ES, for embryonic stop) that contains a premature stop codon. The detection of mRNA containing the ES exon in embryonic rat brain(More)
Members of the N-methyl-d-aspartate (NMDA) class of glutamate receptors (NMDARs) are critical for development, synaptic transmission, learning and memory; they are targets of pathological disorders in the central nervous system. NMDARs are phosphorylated by both serine/threonine and tyrosine kinases. Here, we demonstrate that cyclin dependent kinase-5(More)
GABA is formed primarily from decarboxylation of glutamate by a family of cytosolic and membrane-bound GAD enzymes. In the adult, GAD-derived GABA sustains the vitality of the central nervous system (CNS), since blockage of GAD rapidly leads to convulsions and death. In plants, cytosolic GAD synthesizes GABA in response to hormones and environmental stress.(More)