Learn More
Our visual system can link components of contours and segregate contours from complex backgrounds based on geometric grouping rules. This is an important intermediate step in object recognition. The substrate for contour integration may be based on contextual interactions and intrinsic horizontal connections seen in primary visual cortex (V1). We examined(More)
Neuronal responses at early stages in visual cortical processing, including those in primary visual cortex (V1), are subject to the influences of visual context, experience and attention. Here we show that for monkeys trained in a shape discrimination task, V1 neurons took on novel functional properties related to the attributes of the trained shapes.(More)
While recent studies of synaptic stability in adult cerebral cortex have focused on dendrites, how much axons change is unknown. We have used advances in axon labeling by viruses and in vivo two-photon microscopy to investigate axon branching and bouton dynamics in primary visual cortex (V1) of adult Macaque monkeys. A nonreplicative adeno-associated virus(More)
In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In(More)
Thresholds for detecting the angle of rotation of vertical symmetrical patterns containing few or no explicit vertical or horizontal contours were found to be almost as low as those for an actual vertical line extending approximately the same range. This hyperacuity performance, which we refer to as implicit orientation discrimination, shares most of its(More)
The traditional view on visual processing emphasizes a hierarchy: local line segments are first linked into global contours, which in turn are assembled into more complex forms. Distinct from this bottom-up viewpoint, here we provide evidence for a theoretical framework whereby objects and their parts are processed almost concurrently in a bidirectional(More)
The strong conical hull intersection property and bounded linear regularity are properties of a collection of nitely many closed convex intersecting sets in Euclidean space. These fundamental notions occur in various branches of convex optimization (constrained approximation, convex feasibility problems, linear inequalities, for instance). It is shown that(More)