Learn More
Due to its low storage cost and fast query speed, hashing has been widely adopted for similarity search in multimedia data. In particular, more and more attentions have been payed to multimodal hashing for search in multimedia data with multiple modalities, such as images with tags. Typically, supervised information of semantic labels is also available for(More)
Most existing hashing methods adopt some projection functions to project the original data into several dimensions of real values, and then each of these projected dimensions is quantized into one bit (zero or one) by thresholding. Typically, the variances of different projected dimensions are different for existing projection functions such as principal(More)
Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hashcode learning with deep(More)
Hashing, which tries to learn similarity-preserving binary codes for data representation, has been widely used for efficient nearest neighbor search in massive databases due to its fast query speed and low storage cost. Because it is NP hard to directly compute the best binary codes for a given data set, mainstream hashing methods typically adopt a(More)
In many applications, the data, such as web pages and research papers, contain relation (link) structure among entities in addition to textual content information. Matrix factorization (MF) methods, such as latent semantic indexing (LSI), have been successfully used to map either content information or relation information into a lower-dimensional latent(More)
In multiple-instance learning (MIL), an individual example is called an instance and a bag contains a single or multiple instances. The class labels available in the training set are associated with bags rather than instances. A bag is labeled positive if at least one of its instances is positive; otherwise, the bag is labeled negative. Since a positive bag(More)
Hashing has been widely used for approximate nearest neighbor (ANN) search in big data applications because of its low storage cost and fast retrieval speed. The goal of hashing is to map the data points from the original space into a binary-code space where the similarity (neighborhood structure) in the original space is preserved. By directly exploiting(More)