Wouter van Toll

Learn More
— Virtual characters often need to plan visually convincing paths through a complicated environment. For example, a traveler may need to walk from an airport entrance to a staircase, descend the staircase, walk to a shuttle, ride the shuttle to a destination, ride an elevator back to the ground floor, and finally move on the ground floor again to reach the(More)
Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid congested routes that could lead to traffic jams. It also(More)
Games and simulations frequently model scenarios where obstacles move, appear, and disappear in an environment. A city environment changes as new buildings and roads are constructed, and routes can become partially blocked by small obstacles many times in a typical day. This paper studies the effect of using local updates to repair only the affected regions(More)
We describe and demonstrate the Explicit Corridor Map (ECM), a navigation mesh for path planning and crowd simulation in virtual environments. For a bounded 2D environment with polygonal obstacles, the ECM is the medial axis of the free space annotated with nearest-obstacle information. It can be used to compute short and smooth paths for disk-shaped(More)
A navigation mesh is a representation of a 2D or 3D virtual environment that enables path planning and crowd simulation for walking characters. Various state-of-the-art navigation meshes exist, but there is no standardized way of evaluating or comparing them. Each implementation is in a different state of maturity, has been tested on different hardware,(More)
This paper presents a GPU-accelerated approach for improving the approximated construction of Generalized Voronoi Diagrams (GVDs). Previous work has shown how to render a GVD onto the GPU framebuffer, and copy it to the CPU for extraction of a high-quality diagram. We improve upon this technique by performing more computations in parallel on the GPU, and(More)
As the world population is growing and urbanization increases, the focus on efficient and safe crowd management is growing. In all kinds of environments the importance of analyzing and quantifying crowd flows is acknowledged. The quality of crowd flows and particularly the safety in pedestrian environments are more important than ever before. To support in(More)
  • 1