Learn More
Optical measurement of fruit quality is challenging due to the presence of a skin around the fruit flesh and the multiple scattering by the structured tissues. To gain insight in the light-tissue interaction, the optical properties of apple skin and flesh tissue are estimated in the 350-2200 nm range for three cultivars. For this purpose, single integrating(More)
The implementation of optical sensor technology to monitor the milk quality on dairy farms and milk processing plants would support the early detection of altering production processes. Basic visible and near-infrared spectroscopy is already widely used to measure the composition of agricultural and food products. However, to obtain maximal performance, the(More)
We review nondestructive techniques for measuring internal and external quality attributes of fruit and vegetables, such as color, size and shape, flavor, texture, and absence of defects. The different techniques are organized according to their physical measurement principle. We first describe each technique and then list some examples. As many of these(More)
In this paper we demonstrate how a limited amount of a priori knowledge about spectral variability can be used in extended multiplicative scattering correction (EMSC) to remove disturbing effects such as light scattering variation in visible and near-infrared spectra prior to data modeling. Two different datasets were studied. In the first dataset, pigment(More)
Optical brain stimulation gained a lot of attention in neuroscience due to its superior cell-type specificity. In the design of illumination strategies, predicting the light propagation in a specific tissue is essential and requires knowledge of the optical properties of that tissue. We present the estimated absorption and reduced scattering in rodent brain(More)
As a model is only an abstraction of the real system, unmodeled dynamics, parameter variations, and disturbances can result in poor performance of a conventional controller based on this model. In such cases, a conventional controller cannot remain well tuned. This paper presents the control of a spherical rolling robot by using an adaptive neuro-fuzzy(More)
A supercontinuum laser based double integrating sphere setup in combination with an unscattered transmittance measurement setup was developed and carefully validated for optical characterization of turbid samples in the 500-2250 nm wavelength range. A set of 57 liquid optical phantoms, covering a wide range of absorption and scattering properties, were(More)