Learn More
A large-scale study of facial soft tissue depths of Caucasian adults was conducted. Over a 2-years period, 967 Caucasian subjects of both sexes, varying age and varying body mass index (BMI) were studied. A user-friendly and mobile ultrasound-based system was used to measure, in about 20min per subject, the soft tissue thickness at 52 facial landmarks(More)
The state-of-the-art diagnostic tools in oral and maxillofacial surgery and preoperative orthodontic treatment are mainly two-dimensional, and consequently reveal limitations in describing the three-dimensional (3D) structures of a patient's face. New 3D imaging techniques, such as 3D stereophotogrammetry (3D photograph) and cone-beam computed tomography(More)
In the field of maxillofacial surgery, there is a huge demand from surgeons to be able to pre-operatively predict the new facial outlook after surgery. Besides the big interest for the surgeon during the planning, it is also an essential tool to improve the communication between the surgeon and his patient. In this work, we compare the usage of four(More)
The aim of this study was to present a new approach to acquire a three-dimensional virtual skull model appropriate for orthognathic surgery planning without the use of plaster dental models and without deformation of the facial soft-tissue mask. A "triple" cone-beam computed tomography (CBCT) scan procedure with triple voxel-based rigid registration was(More)
A mobile and fast, semi-automatic ultrasound (US) system was developed for facial soft tissue depth registration. The system consists of an A-Scan ultrasound device connected to a portable PC with interfacing and controlling software. For 52 cephalometric landmarks, the system was tested for repeatability and accuracy by evaluating intra-observer agreement(More)
This paper presents an algorithm for non-rigid registration of breast MRI follow-up images that compensates for differences in patient positioning while maintaining real anatomical and pathological changes. The proposed method uses a biomechanical model to constrain the deformation of the internal breast tissue according to elastic continuum mechanics,(More)
We present a new approach for the registration of breast MR images, which are acquired at different time points for observation of lesion evolution. In this registration problem, it is of utmost importance to correct only for differences in patient positioning and to preserve other diagnostically important differences between both images, resulting from(More)