Wouter A. van Winden

Learn More
Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at these two levels. Transcriptome as well as metabolite changes(More)
Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate,(More)
This study addresses the relation between NADPH supply and penicillin synthesis, by comparing the flux through the oxidative branch of the pentose phosphate pathway (PPP; the main source of cytosolic NADPH) in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum. The fluxes through the oxidative part of the PPP were(More)
First, we report the application of stable isotope dilution theory in metabolome characterization of aerobic glucose limited chemostat culture of S. cerevisiae CEN.PK 113-7D using liquid chromatography-electrospray ionization MS/MS (LC-ESI-MS/MS). A glucose-limited chemostat culture of S. cerevisiae was grown to steady state at a specific growth rate(More)
In this research, two dynamic (13)C-labeling experiments confirmed turnover and rapid mobilization of stored glycogen and trehalose in an aerobic glucose-limited chemostat (D=0.05 h(-1)) culture of Saccharomyces cerevisiae. In one experiment, the continuous feed to an aerobic glucose-limited chemostat culture of S. cerevisiae was instantaneously switched(More)
This study focuses on unravelling the carbon and redox metabolism of a previously developed glycerol-overproducing Saccharomyces cerevisiae strain with deletions in the structural genes encoding triosephosphate isomerase (TPI1), the external mitochondrial NADH dehydrogenases (NDE1 and NDE2) and the respiratory chain-linked glycerol-3-phosphate dehydrogenase(More)
In this study we developed a new method for accurately determining the pentose phosphate pathway (PPP) split ratio, an important metabolic parameter in the primary metabolism of a cell. This method is based on simultaneous feeding of unlabeled glucose and trace amounts of [U-13C]gluconate, followed by measurement of the mass isotopomers of the intracellular(More)
Metabolic-flux analyses in microorganisms are increasingly based on (13)C-labeling data. In this paper a new approach for the measurement of (13)C-label distributions is presented: rapid sampling and quenching of microorganisms from a cultivation, followed by extraction and detection by liquid chromatography-mass spectrometry of free intracellular(More)
The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed-acid fermentation metabolism was studied in a two-compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini-plug-flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the(More)
The (13)C-labeling technique was introduced in the field of metabolic engineering as a tool for determining fluxes that could not be found using the 'classical' method of flux balancing. An a priori flux identifiability analysis is required in order to determine whether a (13)C-labeling experiment allows the identification of all the fluxes. In this(More)