Worawat Meevasana

Learn More
Many-body interactions in transition-metal oxides give rise to a wide range of functional properties, such as high-temperature superconductivity, colossal magnetoresistance or multiferroicity . The seminal recent discovery of a two-dimensional electron gas (2DEG) at the interface of the insulating oxides LaAlO(3) and SrTiO(3) (ref. 4) represents an(More)
Understanding the role of competing states in the cuprates is essential for developing a theory for high-temperature superconductivity. We report angle-resolved photoemission spectroscopy experiments which probe the 4a0 x 4a0 charge-ordered state discovered by scanning tunneling microscopy in the lightly doped cuprate superconductor Ca2-xNaxCuO2Cl2. Our(More)
The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped(More)
The low-energy electronic structure of the itinerant metamagnet Sr3Ru2O7 is investigated by angle-resolved photoemission and density-functional calculations. We find well-defined quasiparticle bands with resolution-limited linewidths and Fermi velocities up to an order of magnitude lower than in single layer Sr2RuO4. The complete topography, the cyclotron(More)
Several transition-metal dichalcogenides exhibit a striking crossover from indirect to direct band gap semiconductors as they are thinned down to a single monolayer. Here, we demonstrate how an electronic structure characteristic of the isolated monolayer can be created at the surface of a bulk MoS2 crystal. This is achieved by intercalating potassium in(More)
A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases,(More)
The evolution of Ca2-xNaxCuO2Cl2 from Mott insulator to superconductor was studied using angle-resolved photoemission spectroscopy. By measuring both the excitations near the Fermi energy as well as nonbonding states, we tracked the doping dependence of the electronic structure and the chemical potential with unprecedented precision. Our work reveals(More)
We investigate the normal state of the "11" iron-based superconductor FeSe0.42Te0.58 by angle-resolved photoemission. Our data reveal a highly renormalized quasiparticle dispersion characteristic of a strongly correlated metal. We find sheet dependent effective carrier masses between approximately 3 and 16m{e} corresponding to a mass enhancement over band(More)
Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the(More)
A recent highlight in the study of high-T(c) superconductors is the observation of band renormalization or self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the(More)