Woonbong Hwang

Learn More
Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of(More)
Nanogenerators (NG) have been developed to harvest mechanical energy from environmental sources such as vibration, human motion, or movement of automobiles. We demonstrate a robust and large-area NG based on a cost-effective Al substrate with the capability to be easily integrated in series and parallel for high-output performance. The output voltage and(More)
Superhydrophilic and superhydrophobic surfaces were studied with an eye to industrial applications and use as research tools. Conventional methods involve complex and time-consuming processes and cannot feasibly produce large-area three-dimensional surfaces. Here, we report robust and large-area alumina nanowire structures with superhydrophobic or(More)
In general, methyl orange (MO) can be degraded by an electrocatalytic oxidation process driven by a power source due to the generation of superoxidative hydroxyl radical on the anode. Here, we report a hybrid energy cell that is used for a self-powered electrocatalytic process for the degradation of MO without using an external power source. The hybrid(More)
A novel calibration method is proposed for determining lateral forces in atomic force microscopy (AFM), by introducing an angle conversion factor, which is defined as the ratio of the twist angle of a cantilever to the corresponding lateral signal. This factor greatly simplifies the calibration procedures. Once the angle conversion factor is determined in(More)
To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m(-1)), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on(More)
Highly ordered metallic nanopore membranes are fabricated by direct deposition of nickel on typical porous anodic alumina (PAA) templates. The large-area uniform nanopore arrays of the PAA templates are accurately transferred to the metallic nanopore replicas, depending on the thickness of the deposited metal and the pore size of the base template. We(More)
The enhancement of bendability of flexible nanoelectronics is critically important to realize future portable and wearable nanoelectronics for personal and military purposes. Because there is an enormous variety of materials and structures that are used for flexible nanoelectronic devices, a governing design rule for optimizing the bendability of these(More)
The effect of multilayer geometry on microstrip antennas is investigated for the design of antenna-integrated mechanical structure. Changes in the gain of antenna due to the geometry have been determined using a transmission line analogy. Design of high-gain antenna in bandwidth is proposed away from structural resonance. Experiments are done on microstrip(More)
Nanochannel membranes have been fabricated for many biological and engineering applications. However, due to low-throughput process, high cost, unsuitable pore geometries, and low chemical/mechanical stability, we could not have obtained optimized nanochannel membranes for biomedical treatments as well as a novel building block for artificial cell(More)