Learn More
For numerous enzymes reactive toward small gaseous compounds, growing evidence indicates that these substrates diffuse into active site pockets through defined pathways in the protein matrix. Toluene/o-xylene monooxygenase hydroxylase is a dioxygen-activating enzyme. Structural analysis suggests two possible pathways for dioxygen access through the(More)
Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged diiron center. In this study, we investigated the influence of the hydroxylases, regulatory proteins, and electron-transfer components of(More)
We report the observation of a novel intermediate in the reaction of a reduced toluene/o-xylene monooxygenase hydroxylase (ToMOH(red)) T201S variant, in the presence of a regulatory protein (ToMOD), with dioxygen. This species is the first oxygenated intermediate with an optical band in any toluene monooxygenase. The UV-vis and Mossbauer spectroscopic(More)
Pantothenate kinase catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. The structural gene (coaA) located at 90 min of the Escherichia coli chromosome was cloned and sequenced. The coaA gene was transcribed in the opposite direction to the flanking genes birA and thrU and produced a single 1.1-kb transcript. Translation of the coaA gene(More)
Toluene/o-xylene monooxygenase hydroxylase (ToMOH), a diiron-containing enzyme, can activate dioxygen to oxidize aromatic substrates. To elucidate the role of a strictly conserved T201 residue during dioxygen activation of the enzyme, T201S, T201G, T201C, and T201V variants of ToMOH were prepared by site-directed mutagenesis. X-ray crystal structures of all(More)
Pantothenate kinase catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis and is regulated by feedback inhibition by CoA. Pantothenate kinase was purified to homogeneity from Escherichia coli and was shown to exist as a homodimer. Kinetic analysis indicated the presence of two ATP binding sites that exhibited positive cooperativity with a(More)
The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H(peroxo), Q, and Q* in MMOH and ToMOH(peroxo) in a subclass of TMOH, ToMOH, are substantially different. We review and compare the structural(More)
The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated,(More)
From the catalytic reactions that sustain the global oxygen, nitrogen, and carbon cycles to the stabilization of DNA processing proteins, transition metal ions and metallocofactors play key roles in biology. Although the exquisite interplay between metal ions and protein scaffolds has been studied extensively, the fact that the biological roles of the(More)