Learn More
A highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD-grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (∼74%), and current on/off ratio (>10(4)) with an average field effect mobility of ∼4.7 cm(2) V(-1) s(-1), all of which(More)
We investigated the enhanced photoresponse of ZnO nanowire transistors that was introduced with surface-roughness-induced traps by a simple chemical treatment with isopropyl alcohol (IPA). The enhanced photoresponse of IPA-treated ZnO nanowire devices is attributed to an increase in adsorbed oxygen on IPA-induced surface traps. The results of this study(More)
Organic electronic devices have generated a great deal of research interest because of their low-cost fabrication, limitless material variety, and the myriad of potential applications. [ 1–9 ] Signifi cant research efforts have been directed towards improving the performance of devices such as organic fi eld-effect transistors (OFETs). [ 4–9 ] One important(More)
We demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive(More)
Large-area graphene films, synthesized by the chemical vapor deposition (CVD) method, have the potential to be used as electrodes. However, the electrical properties of CVD-synthesized graphene films fall short of the best results obtained for graphene films prepared by other methods. Therefore, it is important to understand the reason why these electrical(More)
Zeolite MFI nanosheets of 2-nm thickness have been hydrothermally synthesized via cooperative assembly between silica and an organic surfactant, which is functionalized with a diquaternary ammonium group. The zeolite nanosheets have been further assembled into their ordered multilamellar mesostructure through hydrophobic interactions between the surfactant(More)
We demonstrated the nonvolatile memory functionality of ZnO nanowire field effect transistors (FETs) using mobile protons that are generated by high-pressure hydrogen annealing (HPHA) at relatively low temperature (400 °C). These ZnO nanowire devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with(More)
Achieving a low contact resistance for 2D materials is a critical challenge for device applications. In this work, the contact resistance of MoS<sub>2</sub> FETs has been drastically reduced by five times from the reference data using an optimized TiO<sub>2</sub> Fermi level de-pinning layer which reduced the effective Schottky barrier height to 0.1 eV. As(More)
A novel and effective methodology to control the diameters of semiconductor nanowires is reported through a versatile contact-printing method for obtaining size-controlled nanocatalysts by size-tunable carbon-based nanometer stamps. Vertically aligned carbon nanopost arrays, derived from nanoporous alumina templates, are used as the nanoscale stamps for(More)
We report on the adjustment of the operation voltage in ZnO nanowire field effect transistors (FETs) by a simple solvent treatment. We have observed that by submerging ZnO nanowires in isopropyl alcohol (IPA), the surface of the ZnO nanowires is etched, generating surface roughness, and their defect emission peak becomes stronger. In particular, ZnO(More)