Learn More
We report a technique for quantitative three-dimensional (3D) mapping of refractive index in live cells and tissues using a phase-shifting laser interferometric microscope with variable illumination angle. We demonstrate tomographic imaging of cells and multicellular organisms, and time-dependent changes in cell structure. Our results will permit(More)
We report the experimental implementation of optical diffraction tomography for quantitative 3D mapping of refractive index in live biological cells. Using a heterodyne Mach-Zehnder interferometer, we record complex field images of light transmitted through a sample with varying directions of illumination. To quantitatively reconstruct the 3D map of complex(More)
We report a practical method for label-free quantification of specific molecules using spectroscopic imaging of sample-induced phase shifts. Diffraction phase microscopy equipped with various wavelengths of light source is used to record wavelength-dependent phase images. We first perform dispersion measurements on pure solutions of single molecular species(More)
The coupling of the rate of cell growth to the rate of cell division determines cell size, a defining characteristic that is central to cell function and, ultimately, to tissue architecture. The physiology of size homeostasis has fascinated generations of biologists, but the mechanism, challenged by experimental limitations, remains largely unknown. In this(More)
We report that disordered media made of randomly distributed nanoparticles can be used to overcome the diffraction limit of a conventional imaging system. By developing a method to extract the original image information from the multiple scattering induced by the turbid media, we dramatically increase a numerical aperture of the imaging system. As a result,(More)
A single multimode fiber is considered an ideal optical element for endoscopic imaging due to the possibility of direct image transmission via multiple spatial modes. However, the wave distortion induced by the mode dispersion has been a fundamental limitation. In this Letter, we propose a method for eliminating the effect of mode dispersion and therefore(More)
Laser-based Fourier phase microscopy (FPM) works on the principle of decomposition of an image field in two spatial components that can be controllably shifted in phase with respect to each other. However, due to the coherent illumination, the contrast in phase images is degraded by speckles. In this paper we present FPM with spatially coherent white light(More)
Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative(More)
Refractive index imaging is a label-free technique that enables long-term monitoring of the internal structures and molecular composition in living cells with minimal perturbation. Existing tomographic methods for the refractive index imaging lack 3-D resolution and result in artifacts that prevent accurate refractive index quantification. To overcome these(More)
Electrical activity may cause observable changes in a cell's structure in the absence of exogenous reporter molecules. In this work, we report a low-coherence interferometric microscopy technique that can detect an optical signal correlated with the membrane potential changes in individual mammalian cells without exogenous labels. By measuring(More)