Wonmuk Hwang

Learn More
Each step of the kinesin motor involves a force-generating molecular rearrangement. Although significant progress has been made in elucidating the broad features of the kinesin mechanochemical cycle, molecular details of the force generation mechanism remain a mystery. Recent molecular dynamics simulations have suggested a mechanism in which the forward(More)
We investigated the supramolecular structure and continuum mechanical properties of a beta-sheet nanofiber comprised of a self-assembling peptide ac-[RARADADA]2-am using computer simulations. The supramolecular structure was determined by constructing candidate filaments with dimensions compatible with those observed in atomic force microscopy and selecting(More)
In kinesin motors, a fundamental question concerns the mechanism by which ATP binding generates the force required for walking. Analysis of available structures combined with molecular dynamics simulations demonstrates that the conformational change of the neck linker involves the nine-residue-long N-terminal region, the cover strand, as an element that is(More)
Mechanical force plays an important role in the physiology of eukaryotic cells whose dominant structural constituent is the actin cytoskeleton composed mainly of actin and actin crosslinking proteins (ACPs). Thus, knowledge of rheological properties of actin networks is crucial for understanding the mechanics and processes of cells. We used Brownian(More)
We have investigated the supramolecular structure of helical ribbons formed during self-assembly of a b-sheet peptide using computer simulation. We tested a wide range of molecular packing geometries consistent with the experimental dimensions to identify the most stable structure, and then systematically changed the helical geometry to investigate its(More)
Proteins that recognize and act on specific subsets of microtubules (MTs) enable the varied functions of the MT cytoskeleton. We recently discovered that Kif15 localizes exclusively to kinetochore fibers (K-fibers) or bundles of kinetochore-MTs within the mitotic spindle. It is currently speculated that the MT-associated protein TPX2 loads Kif15 onto(More)
Several self-assembling peptide and protein systems that form nanotubes, helical ribbons and fibrous scaffolds have recently emerged as biological materials. Peptides and proteins have also been selected to bind metals, semiconductors and ions, inspiring the design of new materials for a wide range of applications in nano-biotechnology.
Amyloid fibril formation involves nonfibrillar oligomeric intermediates, which are important as possible cytotoxic species in neurodegenerative diseases. However, their transient nature and polydispersity have made it difficult to identify their formation mechanism or structure. We have investigated the dimerization process, the first step in aggregate(More)
We develop a computational model to compare the relative importance of unbinding and unfolding of actin cross-linking proteins (ACPs) in the dynamic properties of the actin cytoskeleton. We show that in the strain-stiffening regime with typical physiological and experimental strain rates, unbinding events are predominant with negligible unfolding. ACPs(More)
At the core of amyloid fibrils is the cross-beta spine, a long tape of beta-sheets formed by the constituent proteins. Recent high-resolution x-ray studies show that the unit of this filamentous structure is a beta-sheet bilayer with side chains within the bilayer forming a tightly interdigitating "steric zipper" interface. However, for a given peptide,(More)