Wonmo Kang

  • Citations Per Year
Learn More
The ability to precisely deliver molecules into single cells is of great interest to biotechnology researchers for advancing applications in therapeutics, diagnostics, and drug delivery toward the promise of personalized medicine. The use of bulk electroporation techniques for cell transfection has increased significantly in the past decade, but the(More)
Sphere forming assays are routinely used for in vitro propagation and differentiation of stem cells. Because the stem cell clusters can become heterogeneous and polyclonal, they must first be dissociated into a single cell suspension for further clonal analysis or differentiation studies. The dissociated population is marred by the presence of doublets,(More)
This brief report describes a novel tool for microfluidic patterning of biomolecules and delivery of molecules into cells. The microdevice is based on integration of nanofountain probe (NFP) chips with packaging that creates a closed system and enables operation in liquid. The packaged NFP can be easily coupled to a micro/nano manipulator or atomic force(More)
New techniques to deliver nucleic acids and other molecules for gene editing and gene expression profiling, which can be performed with minimal perturbation to cell growth or differentiation, are essential for advancing biological research. Studying cells in their natural state, with temporal control, is particularly important for primary cells that are(More)
New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track(More)
A technological gap in nanomanufacturing has prevented the translation of many nanomaterial discoveries into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating nanoscale devices in a reliable and repeatable fashion. Here we present the optimized fabrication of a robust and scalable nanoscale delivery(More)
Several recent micro- and nanotechnologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle but effective delivery of molecules into specific adhered target(More)
  • 1