Learn More
Mathematical modelling and computational analysis play an essential role in improving our capability to elucidate the functions and characteristics of complex biological systems such as metabolic, regulatory and cell signalling pathways. The modelling and concomitant simulation render it possible to predict the cellular behaviour of systems under various(More)
Articles you may be interested in Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels J. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets(More)
Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing(More)
This paper provides an integrated framework handling discrete events for the biological systems. The living organism involves various conditions including discrete phenomena. To enhance the performance and productivity of biological systems, discrete variables play a significant role in designing and operating the biological facilities such as the(More)
We developed high-performance thermal interface materials (TIMs) based on a few-layer graphene (FLG) composite, where FLG was prepared by the interlayer catalytic exfoliation (ICE) method. We experimentally demonstrated the feasibility of FLG composites as TIMs by investigating their thermal and mechanical properties and reliability. We measured the thermal(More)
  • 1