Learn More
The inflammatory response contributes substantially to secondary injury cascades after spinal cord injury, with both neurotoxic and protective effects. However, epigenetic regulations of inflammatory genes following spinal cord injury have yet to be characterized thoroughly. In this study, we found that histone H3K27me3 demethylase Jmjd3 expression is(More)
The blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) formed by capillary endothelial cells provides a physical wall between the central nervous system (CNS) and circulating blood with highly selective permeability. BBB/BSCB disruption by activation of matrix metalloproteinases (MMPs) has been shown to result in further neurological damage after(More)
Histone H3K27me3 demethylase JMJD3 has been shown to be involved in keratinocyte differentiation and wound healing. However, the exact molecular mechanism underlying JMJD3-mediated keratinocyte wound healing has not been fully elucidated. In this study, we report on the biological function of JMJD3 in keratinocyte wound healing using in vitro cell and in(More)
Mammalian SFMBTs have been considered to be polycomb group repressors. However, molecular mechanisms underlying mammalian SFMBTs-mediated gene regulation and their biological function have not been characterized. In the present study, we identified YY1 and methylated histones as interacting proteins of human SFMBT2. We also found that human SFMBT2 binds(More)
Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the(More)
The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently(More)
Histone deacetylases (HDACs) and their inhibitors affect the integrity of blood–brain barrier (BBB) which plays an important role in pathological conditions of the central nervous system (CNS). In this study, expression of HDACs was examined in bEnd.3 endothelial cells subjected to oxygen and glucose deprivation (OGD)–reperfusion injury. Expression of(More)
Fibroblast growth factors (FGFs) function as mitogens and morphogens during vertebrate development. In the present study, to characterise the regulatory mechanism of FGF8 gene expression in developing Xenopus embryos the upstream region of the Xenopus FGF8 (XFGF8) gene was isolated. The upstream region of the XFGF8 gene contains two putative binding sites(More)
  • 1