Wonho Jeong

Learn More
Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena(More)
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative(More)
Quantitative studies of nanoscale heat dissipation (Joule heating) are essential for advancing nano-science and technology. Joule heating is widely expected to play a critical role in accelerating electromigration induced device failure. However, limitations in quantitatively probing temperature fields—with nanoscale resolution—have hindered elucidation of(More)
Motivated by recent experiments, we present here a detailed theoretical analysis of the joule heating in current-carrying single-molecule junctions. By combining the Landauer approach for quantum transport with ab initio calculations, we show how the heating in the electrodes of a molecular junction is determined by its electronic structure. In particular,(More)
Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here we report studies of radiative heat transfer in few Å to 5 nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe(More)
Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work(More)
  • 1