Wonho Jeong

Learn More
Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena(More)
Quantitative studies of nanoscale heat dissipation (Joule heating) are essential for advancing nano-science and technology. Joule heating is widely expected to play a critical role in accelerating electromigration induced device failure. However, limitations in quantitatively probing temperature fields—with nanoscale resolution—have hindered elucidation of(More)
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative(More)
  • 1